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This article investigates power and size of some tests for exogeneity of a
binary explanatory variable in count models by conducting extensive Monte Carlo
simulations. The tests under consideration are Hausman contrast tests as well
as univariate Wald tests, including a new test of notably easy implementation.
Performance of the tests is explored under misspecification of the underlying model
and under different conditions regarding the instruments. The results indicate that
often the tests that are simpler to estimate outperform tests that are more demanding.
This is especially the case for the new test.
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1. Introduction

This article is concerned with inference about endogeneity caused by a binary
variable in count data models. Unlike the case with a continuous endogenous
regressor, such models cannot be consistently estimated by two-stage residual-
inclusion procedures, making it necessary to use other estimation techniques.
For instance, nonlinear instrumental variables estimation, as introduced by Mullahy
(1997), is general enough to be applicable irrespective of the binary nature
of the endogenous regressor, and can therefore be used to conduct Hausman
tests of endogeneity. If the focus is solely on testing exogeneity, however, easily
implementable two-stage residual-inclusion also provides a valid test which was
first proposed by Wooldridge (1997). Furthermore, if the researcher is willing to
introduce parametric assumptions about the error structure of the model (Terza,
1998), significant efficiency gains might be exploited and alternative tests for
exogeneity can be implemented.

Despite its rather specific nature, estimation of count data models with a
potentially endogenous dummy variable is very common in the empirical economics
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literature, and with estimation routines for this models becoming available in
statistical software packages' the number of applications is bound to increase
further. Earlier examples of count data models with an endogenous dummy
variable include Windmeijer and Santos Silva (1997), who studied the effect of a
binary measure of self-reported health on the number of physician consultations;
Terza (1998) who investigated the impact of vehicle ownership on the number
of recreational trips; and Kenkel and Terza (2001) who analyzed how physician
advice affects the consumption of alcoholic drinks. To cite just a few, more recent
work studies whether educational attainment decreased women'’s fertility (Miranda,
2004), or if U.S. residence of Mexican women influenced their relationship power as
measured by the number of less egalitarian responses to a questionnaire (Parrado
et al., 2005). The model has also been used to test for possible endogeneity of
the mechanism to price initial public offerings (bookbuilding or auction) in a
regression on the number of buy recommendations for a company (Degeorge et al.,
2007). Quintana-Garcia and Benavides-Velasco (2008) investigated if an increase of
diversification in firm technology leads to a higher number of patents.

The model has also been the subject of more theoretically-oriented work, which
developed semiparametric procedures to estimate the model under less stringent
assumptions (e.g., Masuhara, 2008; Romeu and Vera-Hernandez, 2005); a Bayesian
version of the model is analyzed in Kozumi (2002). However, since the impact of
these developments on applied work is more modest, and given that the focus of
this article is on tests for exogeneity that are relevant for applied empirical practice,
the analysis will be limited to exogeneity tests obtained under more widespread—if
more restrictive—model assumptions.

Below, various tests for exogeneity in a count data model with a binary
endogenous regressor are presented and their performance is compared in small and
moderately-sized samples through Monte Carlo simulation. This article is restricted
to the just-identified case with one instrument. As a benchmark, the Hausman
test that contrasts efficient and consistent estimates is evaluated against various
univariate Wald tests based on an estimated parameter that captures the degree
of endogeneity. Among them, a new test of particularly easy implementation is
presented. The tests are assessed with regards to sensitivity to instrument strength
and to mild and moderate model misspecification of the data generating process.
A key result of interest to practitioners is that, overall, the two most easy-to-
implement tests, including the new test, displayed very acceptable empirical size and
power properties among the presented tests, often outperforming the other tests.

Frequently endogeneity tests are conceived as pretests to decide whether a
model estimated with an estimator that is consistent under endogeneity can be
re-estimated with a more efficient estimator that is only consistent under exogeneity.
However, recent work by Guggenberger (2008) in a linear IV model context
demonstrates that using a Hausman pretest can be devastating for inference on
second stage tests. Thus, further simulations are performed to address the question
of how exogeneity pretests affect inference about the effect of the potentially
endogenous binary variable in count data models. Here, the results turn out to be
less encouraging, as severe size distortions suggest that researchers should refrain
from using these exogeneity tests as pretests.

'For example, there are routines for both Mullahy’s (1997) NLIV/GMM estimator and
Terza’s (1998) full information maximum likelihood estimator in STATA. See Nichols (2007)
and Miranda (2004), respectively.
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The rest of the article is organized as follows. Section 2 presents the model
under consideration. The tests for exogeneity are introduced in the next section.
The design of the Monte Carlo experiment and its results are discussed in Sec. 4,
while Sec. 5 contains some conclusions.

2. Count Data Regression Models with a Potentially
Endogenous Binary Variable

The model considered here will be a model for a count dependent variable, y, whose
mean, conditional on a vector of observed explanatory variables x, a binary variable
d and an unobserved error component &, is an exponential function of a linear index
of (x,d, €):

E(y|x,d, &) = exp(x'B + B,d + ¢). )

Concentrating the analysis to this class of models means that the conclusions of this
article are relevant to a wide range of applied work, since both Poisson and Negative
Binomial regression, the two most extensively used count model estimators, fall by
default into the class defined in (1).> Note that including the error term & in the
exponential function as opposed to additively outside the function corresponds to
the interpretation of ¢ as further variables that affect the expectation of y (but that
are unobservable to the econometrician) and should be treated symmetrically to the
observed variables.?

If the regressors x and the dummy variable d are statistically independent
from &, the conditional expectation function (1) marginal of ¢ is

E(y|x, d) = exp(x'f + B,d) E[exp(e | x, d)] = exp(x'f" + f,d), (@)

assuming that the mean of exp(e) is constant and that x includes a constant first
element, as then f* is equal to  but with first element shifted by In E[exp(e)]
(cf. Windmeijer and Santos Silva, 1997). Note that assuming zero correlation
between regressors and errors as in the linear case is not sufficient for (2) to hold,
as this does not warrant that E[exp(¢) | x, d] = E[exp(e)].

Equation (2) represents the case of exogeneity, and efficient estimation of the
model depends on the distribution of & and of y|x, d, e. For instance, with the
latter being Poisson-distributed, if & is distributed as normal or exp-gamma, then
the resulting models marginal of & are the Poisson-log-normal and the negative
binomial regression model, respectively. However, because of its robustness to
distributional misspecification and easy implementation, it is very common to give
up full efficiency and estimate models satisfying (2) by Poisson pseudo maximum
likelihood (cf. Wooldridge, 1997), which yields consistent estimates of (f*, f3,)
irrespective of the distribution of . Nonlinear least squares estimation is also
consistent, but is less frequently encountered in the count data context as it neglects
the count nature of the dependent variable. Consistency up to the first element

2Evidently, exponential conditional mean functions are not limited to count data, and
many of the procedures and results discussed here are in principle applicable to continuous
data as well.

3An alternative justification for this representation is by means of the interpretability of
the model in terms of ceteris paribus marginal effects (cf. Winkelmann, 2008, p. 160).
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does not hold in general for nonlinear models but is a specific consequence of the
multiplicative separability of linear combinations in the exponential function.

For continuous elements of x, the parameters f have the interpretation of
(semi-)elasticities with respect to the conditional expectation function (CEF), i.e., for
the kth regressor

JE(y|x,d)/E(y|x,d) _
0x, N

Br

while for discrete regressors, as for instance the binary variable of interest here,
direct interpretation of the coefficients is only suitable as an approximation to the
discrete partial effect exp(f;) — 1. Note that for both marginal and discrete partial
effects as well as for predictions of CEF, inconsistent estimation of the first element
of f is inconsequential.*

The binary variable d is endogenous in model (1) whenever it is not statistically
independent from & and, thus, the second equality in (2) does not hold. Estimation
of the model neglecting endogeneity yields inconsistent estimates of all parameters,
even when the regressors are orthogonal. To pin down the source of this dependence
one can recur to modelling d as

1 ifzy>v

-1, . : G)
{0 if 7y <vw

where z is a vector of observable variables, possibly including at least some elements
from x, and the unobserved error component v follows some joint distribution with
¢ from (1). Terza (1998) proposed to specify the distribution of (e, v)’ conditional
on the exogenous variables (x, z) as bivariate normal according to

Oerml@)C ]

which defines a probit model for (3). Also, statistical dependence is captured entirely
by the correlation parameter p € [—1, 1] which yields independence whenever p =0.
Thus, the hypothesis of exogeneity can be stated as H,:p =0 with alternative
H,:p # 0 corresponding to endogeneity.

3. Tests for Exogeneity

The most widely used test for exogeneity is probably the Hausman test, since it is
applicable in a vast number of situations. In the context of the model discussed here,
it has the advantage that it does not require assumption (4). After shortly discussing
Hausman tests, the exposition will turn to univariate Wald tests, first presenting
two tests based on Terza’s (1998) full information maximum likelihood estimator
and a more general two-stage method of moments estimator. Finally, two tests of
particularly easy implementation are discussed, which also rely on estimation in two
stages: a new test based on a first-order approximation to the method of moments
estimator and a residual inclusion estimator.

*While the partial effects do not depend on the first element of f, predictions of CEF
are consistent because x'f* is consistent for x'f§ + In E[exp(e)].
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3.1. Hausman Contrast Tests

The Hausman test (Hausman, 1978) in its most general form contrasts two estimates
obtained from different estimators. In the case of endogeneity, one of the estimators
is consistent under both the null hypothesis (exogeneity) and the alternative
(endogeneity) while the second estimator is inconsistent under the alternative but
efficient (relative to any linear combination of the two estimators) under the null
hypothesis. Then, denoting by f5. the consistent estimate and by /5, the efficient one,
the Hausman test statistic is

h= By — Be) [Var(Be) — Var(Bp) ™ (Be — Be) ~ 12

with the degrees of freedom of the y? distribution, j, being equal to the dimension
of the f-vectors involved in A.

An early application of a Hausman test to count data models with endogeneity
is provided by Grogger (1990), who suggested calculating the corresponding test
statistic with estimates from Poisson ML and a nonlinear instrumental variables
(NLIV) estimator based on an additive error to the CEF. However, this estimator
is inconsistent under a multiplicative error defined implicitly as exp(e) in (1)
(Dagenais, 1999; Terza, 2006), and Mullahy’s (1997) GMM estimator is therefore
more appropriate to estimate .. In the just-identified case studied here, this
estimator is the NLIV based on the residual function r = yexp(—x'fi — ,d) — 1
which, given an appropriate instrument z, implies the moment condition

E(r|z) = E[exp(e) — 1| z] = 0.

Thus, writing the NLIV estimate of f, as SV and the corresponding Poisson PML

estimate as fPPML, a Hausman test for exogeneity can be based on the test statistic

hl _ (ﬁgPML _ ﬁEILIV)Z

2
=— / ~ . 5
Var(B) — Var(B) ©

Sometimes this Hausman test is implemented by additionally including all elements
of B in the contrast, but both Creel (2004) and Chmelarova (2007) find that A'
outperforms the full-S-version of the test in finite samples.

The denominator of A! results as a special case of the variance of a difference
of estimates when the minuend is the efficient estimator, as then Cov(f, fc) =
Var(f;) (Hausman, 1978). There are two routes of potentially improving on A'.
The first would be to specify the distribution of & and then calculating the
corresponding ML estimator. For instance, if (4) holds, the model for y conditional
on observables is a Poisson-log-normal (PLN) mixture. As the PLN estimator is
efficient relative to the Poisson estimator in this model, a Hausman test statistic
calculated by substituting the PPML estimates by PLN equivalents could perform
better:

Py s

~ Var(BY™) — Var(BjY)

2
N)Cl.

A second procedure in the vein of Weesie (1999) and Creel (2004) is
to estimate Cov(fg, f-) directly instead of relying on the simplification under
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asymptotic efficiency.’ This implies rewriting the two optimization problems of the
Poisson PML and the NLIV as a joint problem by stacking PPML’s first-order
conditions and the moment conditions of NLIV. The resulting test statistic is

. (ﬁZPML _ Zgyuv)z

™ Var(BP) + Var B - 2Cov (B, )

2
’\/Xl'

If the errors follow a bivariate normal distribution, all three tests are
asymptotically equivalent. If not, h* is inconsistent, but A' and A* retain their
consistency. The performance of the two additional variants relative to h' is less
clear in finite samples. For 4’ the potential gains depend crucially on the small
sample properties of the covariance estimator. Likewise, for h? to outperform h' the
higher precision of PLN relative to Poisson—which is an asymptotic result—needs
to be visible enough in finite samples.

3.2. Wald Tests

There are alternatives to the Hausman contrast test for exogeneity. For instance,
in the linear IV model, estimating a reduced form for the endogenous variable in
order to obtain residuals which can be plugged into the structural equation leads
to an asymptotically equivalent test for endogeneity (Hausman, 1978). Monte Carlo
simulations in Chmelarova (2007) showed that Wald versions of the Hausman test
often have better properties than the contrast version under a series of different
conditions. However, the endogeneity in count data models in Chmelarova (2007)
concerns continuous regressors, so that the residual inclusion technique is consistent.
Residual inclusion in the framework discussed presently with an endogenous
dummy, on the other hand, yields inconsistent estimates.® Nevertheless, a number
of consistent Wald tests are available.

First, Wooldridge (1997) suggested that while the procedure yields inconsistent
estimates, the test based on residual inclusion is consistent. Second, if one is willing
to impose (4) and a distributional assumption for y | x, d, &, one can recur to Terza’s
(1998) maximum likelihood estimator, which explicitly estimates the correlation
coefficient of the bivariate normal distribution so that the hypothesis p = 0 can be
tested directly. Relaxing the distributional assumption on the dependent variable
still allows to estimate a scaled version of p based on (4), which can be used
to test for endogeneity. Last, following the literature on inference using local
approximations (cf. Chesher, 1991; Gourieroux and Visser, 1997), one can derive a
test based on the inclusion of a generalized residual in the structural equation. While
the second strategy yields consistent estimates for f, under the alternative, the first
and last do not. Their advantage, however, lies in their easy implementation, since
only a standard Poisson regression is needed to carry out these tests.

SCreel’s (2004) approach is optimal GMM, while Weesie (1999) does not use a second
step weighting matrix. Clearly, in the just identified case under consideration both amount
to the same as the choice of the weighting matrix does not affect the estimates.

%Terza et al. (2008) showed that residual inclusion in nonlinear models is inconsistent
in general. Discussions of consistency of residual inclusion in Poisson PML models with
continuous endogenous regressors and inconsistency with binary regressors can be found
inter alia in Wooldridge (1997) and Winkelmann (2008).
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3.2.1. Full Information Maximum Likelihood and Two-Stage Method of Moments
Estimation. Assuming that (4) holds and that y|x,d,e follows a Poisson
distribution with expectation (1), maximum likelihood estimation of the joint model
proceeds by maximizing the sample log-likelihood function Z(f,, 5,7, p,0) =
Y log f(yi, d; | x;, z;), with f(-) denoting the probability density function, which
given the assumptions is equal to (Terza, 1998)

fed 152 = [ f1doxze) x f(d] 5.2, 8) x flo| 2. 2)de

= foo exp(DA ()7 x D*(e)(1 — ®* ()™ x a7 ' Pp(g/0 | x, 2)ds,

where A = exp(x'f + f,d + &) and ®*(g) = (ID(Z,HL“)S ); ®(-) and ¢(-) denoting the

1—p2
cdf and pdf of the standard normal distribution, as usual. While the expression for
f(v,d]x, z) has no closed form solution, it is possible to approximate it through
Gauss-Hermite quadrature. Given the ML estimate p, the null hypothesis Hy:p = 0
is tested constructing the z-statistic

~

p=2=0
s.e.(p)

with s.e.(p) indicating any usual asymptotically valid ML standard error of p.
Terza (1998) also suggested a two stage estimation of this model which leaves
f(|d, x, z, €) unspecified. While the relaxation of assumptions is rather moderate
as bivariate normality of the errors is maintained, the gains of such a procedure lie
mostly in increased computational stability.” Consider (1) under assumption (4):

~ N(0, 1) 6)

E(y|x, d) = exp(x'f + B,d)E(exp(e) | x, d)

2 , B .
= exp(x'f + B,d) exp(%) [d% F(1— d)%i)(—;;)/)}

= exp(x'f* + B, )Y (0, y; 2)

with 0 = gp. To estimate this model in stages, first a probit regression is performed
to obtain estimates of y, so that in a second stage estimation optimization proceeds
with respect to (f, B, 0). Terza’s (1998) suggestion is to implement the second stage
as nonlinear least squares (NLS), or as nonlinear weighted least squares (NWLS)
if the researcher wishes to incorporate a priory knowledge of the distribution of
vl|d, x,z, €.

In the present work, however, the second stage estimation will also be
implemented as a Poisson pseudo-ML regression, i.e., estimates of (f, f,, 0) are
obtained by maximizing a pseudo-log-likelihood function of the Poisson distribution
with expectation A = exp(x'f* 4+ B,d)(0, 3; z). This estimation strategy represents
a compromise between NLS and NWLS, in the sense that it is bound to be

"An important aspect of leaving f(y|d, x, z, €) unspecified is that it broadens the class
of models this estimator is applicable to other non count exponential CEF models. See, for
instance, Egger et al. (2009) who applied such a model to bilateral trade.
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more efficient for count data than NLS since it takes account of the inherent
heteroskedasticity characteristic of count data,® while it avoids the computational
difficulty of the more efficient NWLS procedure.

With an estimate of 0, the pertinent z-statistic of the test with null hypothesis
Hy:0=01is

2= Sge_(g) ~ N(0, 1). (7)

3.2.2. Generalized Residual Inclusion. It is possible to approximate the estimation
of the two-stage method described above without the need of estimating a Poisson
regression with mean /, which in general requires some extra programming as
standard econometric software usually only allow to specify variables entering a
linear index in the exponential function. This is related to Greene’s (1995, 1998)
work in the context of sample selection in count data models. The starting point of
this approximation is again (1) under assumption (4), which written separately for
the two possible outcomes of d is

0 /
E(y|x,d=1)=exp(xp* + ﬁdd)% =exp(xf" + f,)Q, and
1 —®0+ 7y
B0 |x.d =0 = exp(up) g 5 = explup)

Taking logarithms of the endogeneity bias correction terms Q, and Q, allows to
write them as part of the linear index in the exponential function. Furthermore, the
first-order Taylor series expansion of log Q, and log Q, around 0 =0 is

$(2') —(z'y)
d(z'y) 1 —®(zy)’

logQ, ~ 0 and logQ, ~ 0

so that the second stage of the former estimator can be approximated by estimating
a Poisson pseudo-ML regression with expectation

E(y|x,d) = exp(x'p* + f,d + 0m), with m=d (7 G
1 —d(z'y)

S D(2y)

+(1—-d)

and replacing m with a consistent estimate / obtained with probit estimates 3.’

Estimates of m represent generalized residuals in the sense that the first order
conditions in the estimation of 7 in the reduced form are a set of orthogonality
conditions between m and z. Orme (2001), who introduced the same local
approximation in the context of a dynamic probit model, proposed testing for the
presence of an endogenous initial condition by using the estimated coefficient on the
generalized residuals, 6. The same procedure can be applied here, suggesting a new
test for exogeneity in the present count data context: if p = 0 the approximation
is exact, so that the pseudo-ML estimates of 0 will be consistent under the null
hypothesis of exogeneity and the test statistic #* in (7) can be used.

8The argument for Poisson pseudo-MLE against NLS is presented extensively by Santos
Silva and Tenreyro (2006) in the context of non count exponential CEF models.
°This technique has also been used by Angrist (2001) to approximate a Tobit MLE.
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3.2.3. Residual Inclusion. While a glance at the pertinent literature shows that
many resarchers are comfortable with assumption (4), the test proposed in
Wooldridge (1997) is consistent under weaker distributional assumptions as it does
not require bivariate normality. It does, however, in contrast to the Wald tests
considered so far, require instruments.

The residual inclusion estimation procedure consists in including residuals from
the reduced form equation for the endogenous variable in the linear index of the
second stage exponential CEF. The two key assumptions for consistency of this
technique are independence of the reduced form residuals from the instruments
and linearity of the CEF of & given v. The linear CEF condition holds if, as
considered so far, the error terms are bivariate normally distributed. However,
independence of the residuals from the instruments is unlikely to hold in the binary
case. Nevertheless, as pointed out by Wooldridge (1997), the procedure is still valid
to test for exogeneity, since under the null hypothesis of d being exogenous the two
assumptions on the errors need not hold as then the CEF reduces to (2), i.e., while
the procedure does not yield consistent estimates, it does provide a valid Hausman-
type Wald test for endogeneity.

Starting with assumption (4), the CEF of ¢ given v is E(e | v) = Ov, with 0 = op
as before. Therefore, it is always possible to write &€ = Qv + error, with this error
being independent of v by construction. Thus, the suggested test would proceed by
replacing ¢ in (1) with 6v + error and conditioning y on x, d, and v (instead of &).
That is, estimating

E(y | X, d’ U) = exp(x//i + ﬁdd + 91))

by Poisson pseudo-ML, using v = d — ®(z')) for the unobserved v, where estimates
for y could be obtained from a probit regression or, alternatively, from other models
for binary dependent variables such as the linear probability model, which would
produce residuals ? = d — z’). Again, the null hypothesis of exogeneity is expressed
as 0 = 0 and the test statistic #* can be used.

4. A Monte Carlo Simulation Study

To assess finite sample properties of the tests discussed in the previous sections,
a Monte Carlo simulation experiment is conducted. Bearing in mind the known
limitations of such an approach, special care has been placed on addressing a variety
of issues concerning the performance of the tests under different conditions, such
as moderate misspecification and unavailability of instruments, as well as suitability
of the tests for pretesting. All programming has been written in GAUSS, pseudo-
random number generators, and other subroutines used were taken from GAUSS’
libraries; code and a supplementary appendix containing more extensive results are
available from the author on request.

4.1. Experimental Design

Every reported simulation proceeded by drawing a random sample of size n from
two independent standard normally distributed variables, x and z. Next, the errors
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¢ and v were drawn from some joint distribution having 0 expectation and variance
of v equal to 1. The endogenous binary variable, d was formed according to

d=1(y.z+7.x+v=0)

with 1(-) denoting the indicator function. Then, the conditional expectation of the
count dependent variable y was constructed as

A=exp(—1+4+0.5x+d+¢)

so that, finally, y was obtained by random sampling from some count data
distribution with expectation 1. Here, the effect of the dummy on the expectation
of y is exp(1) — 1 ~ 1.71 which might seem above what can be expected in some
empirical applications, but adherence to the unit coefficient on d can be defended
on the grounds of comparability to other studies.!® Sample sizes (n) considered were
200, 500, and 1,000. Results for larger samples are not reported as then differences
between tests even out quickly and they converge to their asymptotic limits. Smaller
samples, on the other hand, were not investigated as microeconometric applications
of this model with less observations are unlikely to be encountered in practice.
Most Monte Carlo simulations were replicated 10,000 times, the significantly more
computing-intensive routines for the tests based on full information maximum
likelihood (FIML) estimates were performed with 2,000 and 1,000 replications.
All tests were performed at a nominal significance level of 5%. Different data
generating processes were obtained by varying the values of the vector v, the joint
distribution of the errors and the distribution of y| x, d, e.

By assigning different values to 7, the strength of the instrument was
manipulated. While in the linear IV model the concentration parameter provides an
unequivocal summary measure of instrument strength (cf. Stock et al., 2002), there
is no generic equivalent for nonlinear models. Trivially, the impact of the instrument
is affected by the proportion of the variance of (y.z+ y.x + v) explained by y.z.
Note that a given ratio can be obtained by either changing the variance of the
error v with respect to the given variance of (y,z 4 y,x), or by altering the relation
Var(y,z)/Var(y,x) with given relation of Var(y,z + y,x) to Var(v). While the two
interventions amount to the same in the linear model, here results might differ.

The probability density function (pdf) f(v|x, d, €) was set to be either Poisson
with mean A or Negative Binomial I with mean A and variance 24. With the
exception of the test based on full information maximum likelihood, all tests
should be invariant to the overdispersion introduced by the Negative Binomial I
variant. The baseline specification for the error distribution was the bivariate normal
distribution given in (4) with values of p ranging from 0-0.95 for most experiments.
To assess sensitivity to misspecification of (4), (e, v) were also generated from a
bivariate Gaussian copula with an exponential Gamma marginal distribution for &
and a standard logistic marginal for v, inducing a Negative Binomial model for y
conditional on observables and a logit model for d. Finally, the tests were conducted
with the errors following the same exp-Gamma and logistic marginals but with joint
distribution determined through the Frank copula.

1"Monte Carlo studies of count data models with unit coefficient on endogenous
variables include Creel (2004), Romeu and Vera-Hernandez (2005), and Chmelarova (2007).
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Table 1
Details on the DGP of Monte Carlo simulations
Distribution of Distribution of Reduced form
Table Columns y|x,d, e (g,v) parameters (y,,y,)

all Poisson(2) BVN(0,0, 1, 1, p) (+/0.50, +/0.50)
2 (1) Poisson(4) BVN(0,0, 1, 1, p) (+/0.75, /0.25)
) Poisson(2) BVN(0,0, 1, 1, p) (+/1.50, +/0.50)
(3) Poisson(2) BVN(0,0, 1, 1, p) (+/0.25, 1/0.75)

3 (1) Poisson(4) BVN(0,0, 1, 1, p) (+/0.50, 0.00)

() Poisson(2) BVN(0,0, 1, 1, p) (+/2.00, 0.00)
4 (1), (2)  NegBin(4, 1) BVN(0,0, 1, 1, p) (+/0.50, +/0.50)
3) Poisson(4) e ~ exp Gamma(l, 1), (+/0.50, /0.50)

v ~ Logistic(0, 3/7)

4), (5 Poisson(4) Gaussian copula* (+/0.50, +/0.50)
6), (7) Poisson(4) Frank copula* (+/0.50, +/0.50)
5 (1) Poisson(4) BVN(0,0, 1, 1, p) (+/0.50, +/0.50)
() Poisson(2) BVN(0,0, 1, 1, p) (+/0.25, 1/0.75)

*Marginal distributions of the copulae: & ~ exp Gamma(l, 1), v ~ Logistic(0, 3/7).

A table containing the descriptions of the precise data generating processes that
were used in producing the results discussed below can be found in Table 1.

The next subsection discusses empirical size and power of the proposed tests
under ideal assumptions on the data generating process, i.e., with assumption (4)
holding. Next, the discussion centers on the tests that theoretically are able to
identify exogeneity in the absence of instruments, assessing the goodness of their
performance under this condition in the simulations. Results under misspecification
of the data generating process are considered next, and the section closes considering
the effect on the empirical size of tests on f3, after using endogeneity tests as pretests
to choose between estimators for the model.

4.2. Empirical Size and Power

The first three columns of Table 2 contain simulation results for the empirical size of
different tests for exogeneity with nominal size 5%. The table shows results for three
different sample sizes of 200, 500, and 1,000 observations. The coefficients of the
reduced form equation, y, and y_, were set to V0.5 each, so that the ratio Var((y.z +
y,.x)/Var(v) equaled 1. With 10,000 replications, a 95% confidence interval for the
estimated size of tests is [0.05 & 1.96,/0.05 x 0.95/10'000] ~ [0.046, 0.054].!

The first three rows contain the rejection frequencies of the exogeneity
hypothesis for the Hausman tests with test statistics k!, A%, and h* discussed
previously. The test that contrasts PPML estimates with the NLIV estimates (H1)

The corresponding confidence interval for 2,000 replications is approximately [0.405,
0.595].
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Table 2
Rejection frequencies of tests for exogeneity—the effect of sample size

p=0 p=0.20 p=0.50

Sample size: 200 500 1000 200 500 1000 200 500 1000

Hausman contrast tests

H1 0.0365 0.0459 0.0517 0.0672 0.1168 0.2019 0.1796 0.4423 0.7451

H2 0.0287 0.0371 0.0432 0.0583 0.1050 0.1798 0.1708 0.4223 0.7239

H3 0.0038 0.0060 0.0084 0.0097 0.0265 0.0534 0.0363 0.1902 0.4788
Wald tests

FIML 0.0540 0.0635 0.0640 0.0670 0.1600 0.2750 0.2070 0.6605 0.9160

TSM NLS 0.0893 0.0728 0.0627 0.0668 0.0638 0.0799 0.0790 0.1997 0.4376
TSM PPML 0.0739 0.0616 0.0561 0.0766 0.1079 0.1806 0.2046 0.4616 0.7620

GRI 0.0750 0.0603 0.0573 0.1047 0.1309 0.1958 0.2798 0.4971 0.7570
RI 0.0814 0.0605 0.0554 0.1060 0.1240 0.1706 0.2445 0.3964 0.5963
GRI-TSA 0.0509 0.0441 0.0420 0.0748 0.0999 0.1578 0.2188 0.4287 0.7043
RI-TSA 0.0711 0.0566 0.0535 0.0945 0.1192 0.1667 0.2272 0.3863 0.5931

Notes: Number of replications = 10,000 (FIML: 2,000 replications). Nominal test
size = 0.05.

performs better than the two other Hausman tests. While underrejecting the true
null hypothesis with 200 observations, H1 displays correct size for larger samples,
while H2, which uses PLN estimates instead of PPML, underrejects slightly even for
the largest sample. The test H3, which attempts to improve on H1 by estimating
the covariance from the data instead of relying on the asymptotic simplification,
has a serious underrejection problem for all sample sizes considered. Since estimated
coefficients and their standard errors are the same as in HI, it follows that
underrejection must be due to upward bias in the estimation of Cov (5™, YY),
These results on the Hausman tests are opposite in sign to previous findings
concerning continuous endogenous regressors (Creel, 2004; Chmelarova, 2007),
were Hausman contrast tests tend to overreject H,. As for results on power,
Table 2 displays rejection frequencies of the false null hypothesis under p = 0.2
(columns 4-6) and p = 0.5 (columns 7-9). The performance of H1 and H2 are
practically indistinguishable. This implies that there might be very small or even no
gains at all from implementing H2 instead of the more robust H1, even under an
ideal DGP for H2.

Turning to the Wald tests, results are presented for tests based on the FIML
estimates (FIML), two-stage method of moments estimates implemented via NLS
(TSM NLS) and PPML (TSM PPML), as well as for the new test derived from
the generalized residual inclusion (GRI) and the test based on the residual inclusion
procedure (RI). The TSM tests are based on two-stage adjusted standard errors.
For GRI and RI, results are presented separately for tests using regular standard
errors and two-stage adjusted standard errors (GRI-TSA and RI-TSA). Thus, GRI
and RI are tests which virtually can be implemented by the practitioner in a matter
of seconds, while the two-stage adjustment might take more time as it generally
requires a minimum of custom programming.

Considering the empirical size of the Wald tests with samples of 200
observations, most of them overreject the null hypothesis by 2-4 percentage points,
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with the exception of FIML and GRI-TSA, whose rejection frequencies are not
significantly different from 5%. With increasing sample size, the other tests also
gradually tend to the nominal size. As the results make evident, using two-stage
adjusted standard errors improves noticeably the empirical size of the GRI and RI
tests in small to moderate samples, although the GRI-TSA standard errors seem
to be a little bit too large leading to slight underrejection in some cases. The TSM
NLS test is the only one to overreject clearly even with sample size 1,000. It also
performs comparatively poorly with respect to power. As expected, FIML has the
largest power in this setting where it is the efficient estimator, followed by the TSM
PPML and GRI(-TSA) tests. The RI(-TSA) tests are comparable in power to the
H1 Hausman test."?

The DGP in Table 2 implied that Var(y,z)/Var(y.z + y,x +v) = 0.25, i.e., that
the variance of the instrument determines one quarter of the total variance of
the linear combination that determines d. Now, consider a change in instrument
strength. By specifying a DGP which leaves y, = V0.5 as before, but with . =+/1.5,
the fraction of the variance explained by the impact of the instrument, y.z, with
respect to the whole systematic variance, Var(y,z + y.x), falls from 0.5 to 0.25,
while the systematic variance relative to the error variance, Var(v), doubles. Taken
together, the new instrument is weaker since Var(y,z)/Var(y,z + y.x +v) ~ 0.167.
How does this change affect power and size of the tests? Comparing the columns
with sample size 500 in Table 2 with columns labeled (2) in Table 3 gives an idea.
While the Hausman and residual inclusion tests suffer severe power loss, TSM
PPML and the generalized residual inclusion tests are barely affected. Figure 1

Table 3
Rejection frequencies of tests for exogeneity—the effect of instrument strength

p=0 p=0.20 p=0.50

IV strength: (1) (@) ©) M ) (©) () (@) )

Hausman contrast tests

H1 0.0283 0.0449 0.0584 0.0639 0.0936 0.1541 0.2206 0.3042 0.5954

H2 0.0248 0.0375 0.0413 0.0602 0.0826 0.1286 0.2194 0.2995 0.5560

H3 0.0072 0.0086 0.0040 0.0222 0.0277 0.0217 0.1091 0.1325 0.2223
Wald tests

FIML 0.0820 0.0620 0.0555 0.1305 0.1525 0.2015 0.4935 0.6095 0.7710

TSM NLS 0.0819 0.0862 0.0695 0.0622 0.0744 0.0799 0.1100 0.2080 0.2905
TSM PPML 0.0666 0.0683 0.0566 0.0960 0.1071 0.1256 0.3111 0.4382 0.5841

GRI 0.0629 0.0640 0.0586 0.1009 0.1206 0.1528 0.3408 0.4543 0.6055
RI 0.0617 0.0633 0.0594 0.0951 0.0980 0.1494 0.2496 0.2665 0.5174
GRI-TSA 0.0451 0.0484 0.0419 0.0779 0.0964 0.1168 0.2835 0.3984 0.5460
RI-TSA 0.0533 0.0581 0.0577 0.0848 0.0908 0.1468 0.2315 0.2544 0.5130

Notes: Number of replications = 10,000 (FIML: 2,000 replications). Nominal test size =
0.05. IV-strength as detailed in text or Table 1.

12Some authors prefer to use what is called size-corrected power to make comparisons
across tests. Here, no size-corrected power is presented, since the question addressed is how
these tests work in practice and which are useful under given characteristics of the data
generating process.
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Figure 1. Empirical power of tests for exogeneity. Notes: Sample size = 500. Nominal test
size = 0.05. Reduced form parameters: upper panel (y,,7,) = (+/0.5, 4/0.5); lower panel
(Ve 7.) = (v/1.5,+/0.5). Graphs based on 20 points p = 0,0.05,0.10, ..., 0.95. Values for
negative p mirrored symmetrically from corresponding positive points. Each point obtained
from 10,000 replications.
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details the circumstance graphically by plotting the power functions of H1, TSM
PPML, GRI-TSA, and RI-TSA over the support of p for both DGPs. The
difference in power grows with increasing absolute value of p and is over 20
percentage points at the extremes. The reason for this difference is that Hausman
and residual inclusion tests rely only on the dependence between the instrument
and the endogenous variable, which in this experiment was significantly weakened.
Meanwhile, tests as TSM PPML and GRI seem to be able to compensate this loss
with the increased variance of the systematic part which allows them to exploit more
fully their functional form assumption.

The remaining columns in Table 3, labeled (1) and (3), show rejection
frequencies of the null hypothesis for further instrument strength scenarios. Here,
Var(y,z+y,x) is reset to unity as in Table 2, and only the fraction of it due
to Var(y,z) is modified to 0.25 (1) and 0.75 (3), inducing a weaker and stronger
instrument, respectively. The results show that only GRI-TSA and RI-TSA reach
appropriate size in the weak instrument case. In the scenario with the strong
instrument, results are very similar to Table 2, with FIML capitalizing on its
efficiency, followed by a more equalized middle field including H1, TSM PPML,
and their approximations GRI and RI. TSM NLS and H2 display markedly lower
power, and H3 again falls prey to its strong underrejection problem.

Monte Carlo simulation studies always raise questions concerning the specificity
of their results. To check that the presented results are not due to the particular choice
of DGP, some sensitivity analysis has been conducted. First, orthogonal regressors are
far from realistic in the social sciences. A further worry is the marginal distribution
of the endogenous dummy, as in practice outcomes with 1 and 0 are often not
balanced. Also, one may wonder if the tests are sensitive to a reduction of the effect
of the dummy on the count variable. Finally, TSM and GRI are based on the null
hypothesis 8 = 0, with 8 = ap. Their positive performance could partly be due to the
fact that in the shown DGP ¢ = 1 and so 0 = p. To address these concerns, separate
simulations were carried out with Corr(x, z) = 0.5, E(d |x,2)=0.2, f, =0.1 and
o = +/2 (not reported). As it turns out, most results are by and large invariant
to these alternatives. The exceptions are H1 and RI’s reduced power when the
regressors are correlated, as well as H1’s when f3, is small. This latter finding is not
surprising given that H1 is based on the contrast of estimates of f5,,.

4.3. Identification by Functional Form

Having observed the performance of FIML, TSM PPML, and GRI-TSA under
reduced impact of the instrument (cf. Fig. 1), a natural question is whether
identification can be achieved by functional form alone, prescind from any
instrument z. To this end, the DGP is specified as before, but setting y, =0
and maintaining y, = +/0.5. Results are shown in Table 4 in columns labeled (1)
for sample sizes of 500 and 2,000 observations. The results prove to be rather
discouraging, as both FIML and TSM PPML display empirical sizes that render
the tests useless.’”> GRI-TSA’s overrejection is not as pronounced, but the test

BMonfardini and Radice (2008) investigated exogeneity testing with no instruments in
the bivariate probit model, which is related to the model under consideration through the
bivariate normality assumption. The present results are in line with theirs, as they report
high overrejection rates for Wald tests. They find likelihood ratio tests to have appropriate
empirical size.
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Table 4
Rejection frequencies of tests for exogeneity—identification by functional form
(1) )

p=0 p=0.2 p=0.5 p=0 p=0.2 p=0.5

N = 500
FIML 0.1565 0.1750 0.2640 0.1375 0.1775 0.4155
TSM PPML 0.1783 0.1960 0.2473 0.1179 0.1181 0.2585
GRI-TSA 0.0729 0.0677 0.0860 0.0812 0.0838 0.2001

N = 2000
FIML 0.2340 0.2950 0.5700 0.1630 0.3490 0.8640
TSM PPML 0.1643 0.1700 0.2990 0.0780 0.1438 0.6538
GRI-TSA 0.0772 0.0714 0.1327 0.0610 0.1123 0.5546

Notes: Number of replications = 10,000 (FIML: 2,000 replications for N = 500, 1,000
replications for N = 2,000). Nominal test size = 0.05. IV-strength of columns (1) and (2) as
detailed in text or Table 1.

lacks power in this setup. The exercise is repeated in columns (2) by strongly
increasing the variance explained by the systematic part. To this end, y, is set to
V2. However, little change is evident in the results for sample size 500. In the
entries corresponding to the larger sample, on the other hand, some improvement is
noticeable for TSM PPML and GRI-TSA, the latter’s overrejection being only mild
and showing increased power. Having empirical applications in mind, nevertheless,
it seems that results from columns (1) represent a more realistic setting regarding
instrument strength, so that the presence of an instrument in the DGP seems to be
necessary for testing in finite samples.

4.4. Results under Distributional Misspecification

When specifying a parametric model, a natural concern relates to the robustness
to distributional misspecification. In the context of count data, for instance,
the overdispersion precluded from a Poisson distribution has been a major
preoccupation which has led a portion of the empirical work to opt for the negative
binomial regression model. Although under exogeneity the pseudo maximum
likelihood properties of the Poisson model warrant consistency of the estimator,
in the model with endogenous binary variable presented here, FIML, TSM and
GRI are inconsistent if € and v are not normally distributed. Moreover, in general,
Terza’s (1998) FIML estimator yields inconsistent estimates whenever f(y|x, d, &)
does not follow a Poisson distribution. However, Romeu and Vera-Hernandez
(2005) showed that in the case of the conditional distribution being Negative
Binomial Type I (NegBinl), the FIML estimator remains consistent, suggesting that
so does the FIML test.!* The first two columns in Table 5 illustrates the performance
of selected tests under the baseline DGP from Table 2 but with the modification

14Corollary 1 in Romeu and Vera-Hernandez (2005) established consistency of (B, f,)
excluding the constant element, which is shifted. The estimate p is inconsistent for p but
equals 0 whenever p does, securing consistency of the exogeneity test.
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Table 5
Rejection frequencies of tests for exogeneity—sensitivity to distributional
assumptions
NegBinl Gaussian copula Frank copula
p=0 p=05 0=0 0°“=02 0°“=0.5 0=1 0“=10
H1 0.0382 0.3321 0.0415  0.0647 0.2930 0.0856  0.5833
FIML 0.1035 0.5970 0.0470  0.1445 0.5870 0.0820  0.7245

TSM PPML 0.0608 0.3747 0.0596  0.1546 0.5859 0.1008  0.9197
GRI-TSA 0.0451 0.6243 0.0400 0.1186 0.5359 0.0817  0.8317
RI-TSA 0.0582 0.5248 0.0582  0.1139 0.4404 0.0917  0.7064

Notes: Number of replications = 10,000 (FIML: 2,000 replications). Nominal test size =
0.05. Sample size = 500. IV-strength as detailed in text or Table 1.

v|x,d, e ~ NegBinl with expectation / as before, and variance 21. Only GRI-TSA
displays correct size. FIML overrejects quite severely, while TSM PPML does less
so, but has noticeably less power than in the baseline case. Hl underrejects and
ranks as the least powerfull among the compared tests.

To assess sensitivity of test size to the crucial assumption of bivariate normality,
a DGP is implemented where the errors (&, v) are independent and follow marginal
distributions different from the normal. The chosen distributions are the exp-
Gamma(1,1) for &, which combined with a Poisson distribution for y conditional on
observables and &, yields a NegBinl distribution for y conditional on observables
only; and a logistic distribution for v, scaled as to have unit variance, which
gives a logit model for d. It might be argued that these modifications represent
rather moderate departures from the distributional assumptions. However, there are
at least two reasons for considering such a scenario. First, as mentioned before,
there is a large body of empirical literature that uses NegBin and logit models,
which consequently must imply either that there exists a large number of real-
world problems where assuming negative binomial and logit processes is sensible,
or that said literature’s distributional assumptions are wrong. The former reason
might find wider approval. Second, if the researcher has a strong belief in some
form of significant departure from normality of the errors which goes beyond exp-
Gamma or logit, she might as well opt to model this explicitly. Further, one might
be interested in the performance of the tests under mild misspecification, since tests
that do not conform to one’s expectations even under these circumstances might as
well be regarded as useless in view of the inherent uncertainty faced with respect
to the ‘true’ data generating process. In other words, rather than her assumptions
coinciding exactly with reality, all the applied econometrician might hope is that her
assumptions approximate the underlying data generating process reasonably well.

Setting these concerns apart and considering the results of this analysis as
shown in the third column in Table 5, the tests do present some minor size
distortions, with H1 and GRI-TSA underrejecting, and TSM PPML and RI-TSA
overrejecting H,. FIML’s overrejection is more substantial. In order to analyze
empirical power of the tests under non normal marginals, dependence between the
errors is induced by random sampling from copula functions. Columns 4 and 5
in Table 5 show rejection frequencies of the null hypothesis of exogeneity when
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the errors’ joint distribution is generated from a bivariate Gaussian copula with
exp-Gamma and logistic marginals, with dependence parameter 0°C equal to 0.2
and 0.5, respectively. Note that 69C, although having the same domain, is not a
correlation coefficient as in the bivariate normal distribution, and thus comparisons
to other tables are not valid. However, both columns reproduce the familiar pattern
of the more parametric tests outperforming the supposedly more robust ones. Also,
RI-TSA, which displayed power comparable to H1, clearly surpasses H1 in this
setting. The last two columns in Table 5 contain results obtained by letting the
joint distribution of the errors be determined by a Frank copula with the same non
normal marginals as before. The Frank copula induces positive dependence between
the variables through the parameter 67¢ € (0, o0), with independence resulting as a
special case when 07 = 0. The parameter is set to 1 in the sixth column and to 10
in the seventh column in Table 5. While for the weaker dependence power between
the tests is rather similar, differences are considerably more pronounced for the case
of stronger dependence. The ranking of the tests is almost the same as with the
Gaussian copula, except for FIML falling back to third place. On the whole, these
results seem to indicate that the tests relying on the bivariate normality assumption
might perform equally well in non normal settings as the other tests. Furthermore,
GRI-TSA’s actual Type I error seems never to be larger than the level determined
by the nominal size.

4.5. Exogeneity Tests as Pretests: A Cautionary Note

By far the most common use of tests for exogeneity is probably as pretests in order
to choose between estimates. If a test rejects exogeneity, then estimates are obtained
from an estimator that is consistent under endogeneity; while if the tests fails to
reject the exogeneity hypothesis, estimates can be calculated from an estimator
that is efficient under exogeneity, although inconsistent if the true DGP entails
endogeneity. Thus, inference about a parameter of interest is conditional on the
outcome of the exogeneity pretest.

The pretests or first stage tests to be considered are the exogeneity tests
discussed so far, H1, FIML, TSM PPML, GRI-TSA, and RI-TSA. If the pretest
fails to reject the null hypothesis, the model is estimated by Poisson MLE and a
(second-stage) two-tailed t-test with null hypothesis Hy:5, = 1 is conducted. Given
rejection of exogeneity in the first stage test, the second-stage test of Hy:ff, =1 is
performed with NLIV estimates if the pretest was either H1 or RI-TSA. For TSM
PPML and GRI-TSA pretests, second-stage tests are calculated with TSM PPML
estimates, while FIML pretests use FIML estimates in the second stage.'> In the
DGP, the true f, is left at 1 throughout all simulations, so that empirical rejection
frequencies measure the finite sample size of the second-stage test.

Inspection of the results displayed in Table 6 suggests that the use of pretests for
exogeneity leads to severe size distortions unless p = 0. Moreover, the overrejection
is increasing over the range of p shown in the table, except for FIML. The reason for
this is that for weaker levels of correlation, the weak power of the pretests leads to
second-stage tests being performed with Poisson ML estimates whose bias for low p
is sufficiently small as to not always reject H,. Loosely speaking, as p increases, the

15Second-stage tests do not use RI-TSA and GRI-TSA estimates as these are
inconsistent unless p = 0.
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Table 6
Empirical size of second-stage tests of §, = 1 using pretests for exogeneity
(1 2
p=0 p=02 p=0.5 p=0 p=02 p=0.5
H1 0.0383 0.3596 0.5507 0.0409 0.3148 0.3960
FIML 0.0540 0.3565 0.3365 0.0520 0.3055 0.2270
TSM PPML 0.0516 0.3681 0.5327 0.0495 0.3326 0.4082
GRI-TSA 0.0493 0.3584 0.4981 0.0471 0.3219 0.3877
RI-TSA 0.0366 0.3578 0.6069 0.0382 0.3187 0.4767

Notes: Number of replications = 10,000 (FIML: 2,000 replications). Nominal test size =
0.05. Sample size = 500. I'V-strength of columns (1) and (2) as detailed in text or Table 1.

bias in f, increases faster than the power of the pretests, leading to higher rejection
frequencies for all tests. Eventually, all second-stage tests’ overrejection lowers, but
except for FIML the turning point is after p = 0.5.

It is clear from the estimated rejection frequencies which are nowhere near
the nominal size, that inference on structural parameters after pretesting in this
model is likely to lead to false results and should thus be avoided. It should be
stressed, however, that the pernicious effect of pretesting is due to interpreting the
failure to reject exogeneity as that the variable in question is exogenous (absence of
endogeneity). Obviously, exogeneity tests can be used to provide empirical evidence
of the presence of endogeneity. This can be important in its own right, as for putting
theories to test, and it can also provide ex-post empirical confirmation for a-priori
concerns about potential endogeneity.

5. Conclusions

In this article, some tests for exogeneity of a binary variable in count data
regression models, including the new GRI test, were examined for their finite
sample properties through Monte Carlo simulations. The behavior of the tests
under correct distributional specification was analyzed subjecting them to different
sample sizes and levels of instrument strength. Test performances under data
generating processes with no instrumental variables were reported, as well as under
distributional misspecification. Finally, the use of these tests as pretests was assessed.
Based on the results of the Monte Carlo experiments, a number of conclusions can
be drawn which might provide some guidance for empirical practice.

The Hausman test which contrasts Poisson ML and NLIV estimates (H1)
performs better than the other more refined versions based on Poisson-log-normal
estimates (H2) or on estimation of the covariance between estimates (H3). Tests
based on residual inclusion (RI) represent a very easy to implement alternative to
H1, which in most scenarios display power comparable to H1, while outperforming
Hausman contrast tests with respect to empirical size.

The other more parametric Wald tests which are based on the bivariate
normality assumption generally present higher power than the Hausman tests, even
in settings where they misspecify the DGP. The FIML test generally achieves the
highest power of the tests. The more robust approximation to FIML, TSM, works
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well when it is implemented through PPML instead of NLS, achieving power almost
as high as FIML. The first order approximation to FIML, generalized residual
inclusion (GRI), exhibits slightly lower power than TSM PPML, but still performs
favorably compared to HI.

On the whole, therefore, these results suggest that using the simpler RI and
GRI tests comes at virtually no cost in terms of test performance. Using two-
stage adjusted standard errors noticeably improves the empirical size of the tests in
smaller samples. Moreover, these tests show the best performances of all tests in the
smallest samples and under the weakest instrument strength levels that were used in
the simulations.

Two caveats have to be considered when testing for exogeneity. The first relates
to the absence of exclusion restrictions in the DGP. Only with large samples and a
very strong instrument does GRI-TSA come close to the nominal test size, the other
tests perform worse. This suggests that there is little hope to test for endogeneity in
practice if the structural model does not include any instruments.

The second issue concerns the use of these tests as pretests. In line with
Guggenberger’s (2008) finding of severe size distortions conditional on Hausman
pretests in the classical linear model, large overrection rates render pretesting futile
in the present count data model. The higher power of the Wald pretests clearly is
not enough to result in acceptable second stage sizes. Therefore, practitioners are
well advised to avoid using these tests as pretests. However, given that theoretical
concerns about endogeneity have led a researcher to implement an estimation
procedure that accounts for this, endogeneity tests can be used to obtain ex-post
empirical evidence of these concerns having been justified.
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