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ABSTRACT
Applications of zero-inflated count data models have proliferated in health economics. However, zero-inflated Poisson or
zero-inflated negative binomial maximum likelihood estimators are not robust to misspecification. This article proposes
Poisson quasi-likelihood estimators as an alternative. These estimators are consistent in the presence of excess zeros without
having to specify the full distribution. The advantages of the Poisson quasi-likelihood approach are illustrated in a series of
Monte Carlo simulations and in an application to the demand for health services. Copyright © 2012 JohnWiley & Sons, Ltd.
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1. INTRODUCTION

The so-called problem of “excess zeros” plagues a majority of count data applications in health economics and
other social sciences. The proportion of observations with zero counts in the sample is often much larger than
that predicted by standard count models, be it the Poisson or the negative binomial model.1 The most common
response is to think of the data-generating process in terms of a discrete mixture of a count random variable and
a degenerate random variable with unit probability mass at zero. For instance, consider the demand for
health services as measured by the number of physician visits. A person might have had zero physician visits
during a given period because (i) she is a follower of alternative medicines and never visits a doctor or because
(ii) she visits doctors in principle but by chance did not do so during the observed period. Type i zeros—
sometimes called structural or strategic—results from a binary process, whereas type ii zeros—sometimes
called incidental—are a realization of a count process to which only the “population at risk” is subjected.

These models allowing for two separate types of zeros are known as zero-inflated count models (Mullahy,
1986, Lambert, 1992), the most prominent ones being the zero-inflated Poisson (ZIP) and zero-inflated negative
binomial (ZINB) models. In health economics, they have been used, among others, for the number of physician
visits (Yen et al., 2001; Sarma and Simpson, 2006; Sari, 2009; Pizer and Prentice, 2011), the number of phar-
macy visits (Chang and Trivedi, 2003), the number of prescriptions (Street et al., 1999), the number of occupa-
tional injuries (Campolieti, 2002), and the number of cigarettes smoked (Sheu et al., 2004; Bauer et al., 2007).

There are two ways to estimate the parameters of zero-inflated count data models. The standard way,
pursued by all of the cited literature, is based on full maximum likelihood (ML) estimation. The alternative
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is to focus on the first moment and either embed it in a linear exponential family distribution and estimate the
parameters by quasi-ML or use a minimum distance type estimator such as nonlinear least squares (NLS)
or generalized methods of moments (GMM). The purpose of this article is to discuss the implementation of this
alternative approach in detail, including its strengths and weaknesses. Specifically, we propose a Poisson quasi-
likelihood (PQL) estimator that is robust to misspecification, as it estimates the regression parameters
consistently regardless of the true distribution of the counts. A series of Monte Carlo experiments and an
application show that PQL estimation is a promising alternative to ML estimation in moderate and large
samples, avoiding sizeable biases that can potentially affect ML estimators.

The next section reviews models for zero-inflated count data. The ML and the quasi-likelihood estimation of
zero-inflated models are discussed in Section 3. Section 4 presents Monte Carlo simulation results comparing
the PQL estimator with the ML estimators. Section 5 illustrates the PQL estimator with logit zero inflation in an
application modeling the frequency of doctor visits. Section 6 concludes the article.

2. ECONOMETRIC MODELS

2.1. Zero-inflated count data models

Zero-inflated count data models have probability function

f yð Þ ¼ pþ 1� pð Þg 0ð Þ for y ¼ 0
1� pð Þg yð Þ for y ¼ 1; 2; 3; . . .

�
(1)

where y is a count-valued random variable, p2 [0, 1] is a zero-inflation parameter (the probability of a strategic
zero), and g(�) is the probability function of the parent count model. Excess zeros, or zero inflation, occur by
definition whenever p> 0. The mean of the zero-inflated count data model is

E yð Þ ¼
X1
k¼1

1� pð Þg kð Þ ¼ 1� pð ÞEg yð Þ (2)

where Eg(y) denotes the mean of the parent distribution. A fully parametric zero-inflated count data model is
obtained once the probability function of the parent count model is specified. For example, the ZIP model is
obtained for

g y; lð Þ ¼ exp �lð Þly
y!

; l > 0 (3)

with mean Eg(y) = l and E(y) = (1�p)l. The main alternative to the ZIP model is the zero-inflated negative
binomial model, which has the same mean as the ZIP but overdispersion in the count part of the model. Both
l and p can be parameterized in terms of exogenous explanatory variables. The standard assumptions are that

l xð Þ ¼ Eg yð jxÞ ¼ exp x
0
b

� �
(4)

and

p zð Þ ¼ exp z
0
d

� �
1þ exp z0dð Þ (5)

where z can be identical to x, overlap with x, or be completely distinct from x. The conditional expectation
function (CEF) of the corresponding zero-inflated count data model is given by

E yð jx; zÞ ¼ 1� p zð Þð Þl xð Þ ¼ exp x
0
b

� �
1þ exp z0dð Þ (6)
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Importantly, this is the CEF of any zero-inflated count data model, not only the ZIP model, as long as
Equations (4) and (5) hold. In addition, Equation (6) is fairly general, in the sense that it can capture
several departures from standard count data models other than zero inflation. For example, Winkelmann and
Zimmermann (1993) derived an expression such as Equation (6) from a model of underreporting (in their model
of “binomial thinning,” y is Poisson distributed with double indexed mean). Kim and Lee (2011) obtained
Equation (6) from a hurdle-at-zero model, where 1�p(z) is the probability of having a positive count, and
the CEF condition on passing the hurdle is modeled as an exponential function: E(y|x, y> 0) = exp(x0b).

2.2. Parameters of interest

In health economic applications such as the ones cited in Section 1, the key objects of interest are predictions of
the CEF as well as its derivatives. The derivative with respect to a variable w, which is an element of both
vectors x and z, is given by

@E yð jx; zÞ
@w

¼ exp x
0
b

� �
1þ exp z0gð Þbw � exp x

0
b

� �
exp z

0
g

� �
1þ exp z0gð Þð Þ2 dw

where bw and dw are the elements in the vectors b and d corresponding to w. Hence, we obtain a relatively
simple expression for the semi-elasticity, [@ E(y|x, z)/E(y|x, z)]/@ w= bw� p(z)dw.

Under the maintained assumption of a zero-inflated data-generating process, one can deduce two further
quantities, namely, the effect of a regressor on the CEF of the parent model and the effect of a regressor on
the probability of an excess zero. More specifically, the parameters b and d provide the semi-elasticities of
the parent model and the changes in the log-odds of strategic zeros, respectively,

@Eg yð jxÞ=Eg yð jxÞ
@x

¼ bx
@log p zð Þ= 1� p zð Þð Þ½ �

@z
¼ dz

The estimation of these parameters of interest in general does not require the specification of a full parametric
distribution because they are identified from the first moment of the model alone.

3. ESTIMATION

3.1. Maximum likelihood estimation

The log-likelihood function of the ZIP model for a sample of n independent observation tuples (yi, xi, zi) is

lnlZIP ¼
Xn
i¼1

11 yi ¼ 0ð Þln exp zidð Þ þ exp �exp xibð Þð Þ½ �
þ11 yi > 0ð Þ �exp xibð Þ þ yixib½ � � ln 1þ exp zidð Þð Þ

(7)

Because the model has a finite mixture structure, the maximization of the log-likelihood function can use the
EM algorithm, although direct maximization using Newton–Raphson is possible as well. Alternative estimation
algorithms are discussed by Hall and Cheng (2010). If the model is correctly specified, ML theory ensures that
these estimators are consistent and asymptotically efficient, provided they exist (Cameron and Trivedi, 1998;
Winkelmann, 2008).

3.2. Moment-based estimation

The parameters b and d can also be estimated directly from the conditional moment restriction (6). Such
an approach is in principle preferable, because it makes fewer assumptions regarding the data-generating
process than ML estimation. These additional assumptions, if violated, will invalidate ML inference but not
moment-based inference. Moment-based estimators are thus more robust.
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Identification based on Equation (6) raises two issues. First, if z has a constant only, we obtain a model with
constant zero inflation. In this case, the CEF of the zero-inflated model is given by

E yð jxÞ ¼ 1� pð Þl xð Þ ¼ exp ln 1� pð Þ þ x
0
b

� �
(8)

and it is not possible to separately identify p and the constant in the parent model. Hence, the share of strategic
zeros is not identified. However, most applied work focuses anyway on semi-elasticities (overall and in the
parent model) and CEF predictions, and all of those can be obtained from Equation (8).

Second, assume x= z, that is, all variables enter the zero-inflation part as well as the parent process. In this
case, two parameter vectors lead to the same CEF (see Papadopoulos and Santos Silva, 2008):

E yð jx; zÞ ¼ exp x
0
b1

� �
1þ exp x0d1ð Þ ¼

exp x
0
b2

� �
1þ exp x0d2ð Þ

for b2 = b1 + d1 and d2 =� d1. Thus, the estimation problem has two solutions. In practice, this identification
problem can be overcome if the sign of at least one element in d is known. Third, in the case where x and z
differ, identification is achieved if there is at least one variable in z that is not included in x.

To implement moment-based estimators in such a just-identified case, several approaches are possible. We
suggest to embed the CEF into a standard Poisson model, an application of quasi-likelihood estimation, which
leads to consistent estimates and, as we will show in Monte Carlo simulations, has also good finite sample
properties. Alternatively, one can solve the sample analogues of unconditional moment restrictions implied
by Equation (6), such as orthogonality between the CEF errors and the functions of the regressors:

E yi � exp x0ibð Þ
1þ exp z0idð Þ

� �
h1 xi; zið Þ ¼ 0 and E yi � exp x0ibð Þ

1þ exp z0idð Þ
� �

h2 xi; zið Þ ¼ 0;

where the functions h1(xi, zi) and h2(xi, zi) are instruments. In general, unweighted orthogonality conditions
between regressors and CEF errors are insufficient to identify b and d. For instance, if h1(x, z) = x, h2(x, z) = z,
and x= z, there are fewer moment conditions than parameters, and the model is underidentified.

As we will show in the next section, the first-order conditions of the quasi-likelihood estimator imply weighted
orthogonality condition between the regressors and the CEF errors, h1(x, z) =w1(x, z)x and h2(x, z) =w2(x, z)z.
In this just identified case, the optimal weights depend on higher-order moments of the model, which are left
unspecified. However, the Monte Carlo study here (and related Monte Carlo results elsewhere; see Santos Silva
and Tenreyro 2006, 2011) suggest that the PQL estimators performs well in general.

3.3. Quasi-ML

Quasi-ML estimation is based on distributions within the linear exponential family (LEF), whose probability
function can be written as (Gourieroux et al., 1984a)

f LEF yð jmxÞ ¼ exp a mxð Þ þ b yð Þ þ c mxð Þyf g; (9)

where mx= m(x ; b) = E(y|x) and mx= (@ a(mx)/@ mx)/(@ c(mx)/@ mx). LEFs have the property that the score function
can be written as

@log f yð jxÞ
@b

¼ y� mxð Þh xð Þ (10)

where h(x) = (dc(mx)/dmx)(@ mx/@ x). Suppose the true model is g0(y|x) 6¼ f(y|x) but E0(y|x) = mx for some value b0.
Thus, the CEF is correctly specified. In this case, the expectation of Equation (10) at the true density is zero,
although the model is misspecified because the CEF residual y�E(y|x) is mean independent of x and thus
has zero covariance with any function h(x). As the empirical score converges to the expected score by the
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law of large numbers, the solution to the ML first-order conditions converges in probability to the true CEF
parameters (see also White, 1982; Gourieroux et al., 1984b).

The Poisson distribution is an LEF member with a(mx) =�mx, b(y) =� ln(y !) and c(mx) = ln(mx). Therefore,
although the data are zero inflated, a Poisson regression yields valid estimates of the objects of interest as long
as the CEF is correctly specified. Valid standard errors require the usual White adjustment to the covariance
matrix. The PQL estimator for the model with nonconstant zero inflation is obtained by maximizing

ql b; dð Þ ¼
Xn
i¼1

yiln~l xi; zi; b; dð Þ � ~l xi; zi; b; dð Þ (11)

where ~l xi; zi; b; dð Þ ¼ exp xibð Þ= 1þ exp zidð Þð Þ. The first-order conditions are
@ql b; dð Þ

@b
¼

Xn
i¼1

yi � exp xibð Þ
1þ exp zidð Þ

	 

xi ¼ 0

and

@ql b; dð Þ
@d

¼ �
Xn
i¼1

yi � expðx0ibÞ
ð1þ expðz0idÞ

	 

exp z0idð Þ

1þ exp z0idð Þ zi ¼ 0

Solving the nonlinear first-order conditions using the Newton–Raphson or related algorithms is relatively
straightforward (Stata code is provided in Appendix A). This estimator for zero-inflated count data is consistent
even if the true data-generating process is not Poisson distributed—as is by definition the case with excess
zeros. The gain of PQL estimation relative to the ML estimation of fully parametric zero-inflated count models
is robustness to misspecification. The main cost of PQL estimation relative to the ML estimation of a correctly
specified model is a loss of precision. In the next section, we explore both aspects, relative bias and efficiency
loss of PQL relative to ML, for varying sample sizes using Monte Carlo simulations.

4. MONTE CARLO EVIDENCE

4.1. Simulation design

To compare the performance of the PQL estimator with its main competitors, the ZIP and the ZINB ML
estimators, we create three setups. All of them are obtained from the following basic experimental design.
The count dependent variable y is specified as

y ¼ 0 with probability p zð Þ
y� with probability 1� p zð Þ

�

where y*| x, v� Poisson(l(x, v)), and l(x, v) and p(z) are given by

l x; vð Þ ¼ exp b0 þ bxþ vð Þ; p zð Þ ¼ exp d0 þ dzð Þ
1þ exp d0 þ dzð Þ (12)

with x = q1 and z= (q1, q2). The scalar regressors q1 and q2 follow w2 distributions with one degree of freedom;
q1 is rescaled to have a variance of 0.1. Thus, the data-generating process contains two regressors, one of which
is excluded from the count part. The focus is on the estimation of b and d = (d1, d2)0, all three of which are set to
1. The parameter b0 is set to �0.5, which ensures a low mean of the parent count process with a substantial
fraction of incidental zeros (~45%). The degree of zero inflation is controlled by d0. All simulation experiments
are run for two levels of zero inflation, 10% and 50%. These values are chosen to reflect the range of percen-
tages of observations with y = 0 typically encountered in applications where zero-inflated models are used. With
10% zero inflation, the total fraction of zeros in the data is approximately 50%; with 50% zero inflation, it is
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approximately 75%. ZI models are unlikely to be of use if the proportion of zeros in the data is higher.2 To
obtain 10% zero inflation, d0 is set equal to �4.2; a value of d0 =� 1.1 results in 50% zero inflation.

In addition, the parent CEF in Equation (12) contains a random component v, which is distributed as Normal
(�0.5s2,s2). The parent distribution of y* given x but marginalized over v is then the Poisson log-normal
distribution (e.g. see Winkelmann, 2008) with variance function

Var y�ð jxÞ ¼ exp b0 þ bxð Þ þ exp b0 þ bxð Þ½ �2 es
2 � 1

� �

Different variance functions for y* can be obtained by specifying s2 as function of x. Letting

s2 xð Þ ¼ ln 1þ c exp k � 1ð Þ b0 þ bxð Þ½ �f g
the parameter k controls the nonlinearity of the variance function, whereas c is a free overdispersion parameter.
Such a parameterization allows to explore variance functions quite freely without abandoning the normal
distribution assumption of v nor the exponential CEF of the parent process.

We use three setups. First, we set c= 0 and k= 0; it follows that s2 = 0 (no unobserved heterogeneity), and
the data-generating process is indeed ZIP with l = exp(�0.5 + x) and zero inflation of 10% or 50%. This first
setup allows us to compare the efficiency loss of PQL relative to the correctly specified and thus asymptotically
efficient ZIP ML estimator.

A second setup is obtained for c = exp(1)� 1 and k= 1. It follows that s2 = 1, and there is quadratic overdis-
persion. Although both ZIP and ZINB are misspecified (because the true parent process is Poisson log-normal),
we expect the ZINB to behave quite satisfactorily as the misspecification is limited to higher-order moments,
not mean and variance. The ZIP model by contrast assumes equality of mean and variance and is thus unlikely
to produce good results. The PQL estimator is robust to this kind of misspecification and should work well.

In our third setup, we set c = 2 and k=� 1, implying a variance function with additive constant

Var y�ð jxÞ ¼ E y�ð jxÞ þ 2

The corresponding variance-to-mean ratio is now hyperbolic. In this case, all three estimators—ZIP, ZINB,
and PQL—only specify the first moment correctly. This should not matter for PQL but lead to bias for ZIP as
well as ZINB.

An all cases, two sample sizes were considered (5000 and 50,000 observations, respectively). The number
of replications was 10,000 for data-generating processes with 5000 observations, and 1000 replications for
those with 50,000 observations. The Monte Carlo study was programmed in STATA/MP 11.1; code is
available from the authors on request.

4.2. Results

The results of the three simulation setups are displayed in Table I, which is divided into three panels, each
presenting results for one of the three setups. Following the focus in the literature, we concentrate on the main
parameters of interest, the semi-elasticity of the parent process b, and the change in the log-odds of strategic
zeros, d1 and d2, whose true values are 1. The main entries in Table I are the mean of the QL and ML estimates

b̂, d̂, and d2 over replications. The numbers in parentheses give standard deviations.
The left-hand panel titled “No overdispersion” shows the results for the first setup in which the data-

generating process is a ZIP model. The first row of results is for the ZIP ML estimator on samples of 5000

observations. The ZIP estimates of b̂ are very close to the true value on average, regardless of whether the
degree of zero inflation is 10% or 50%. Higher degrees of zero inflation imply less information from which
to estimate b, and so the standard deviation is higher with 50% zero inflation. The opposite is the case with
d = (d1, d2). Low degrees of zero inflation imply having to identify the effects of the variables in z on strategic
zeros with little information, and so d is estimated less precisely. PQL estimates b quite well too, although its

2In such cases, it may be advisable to consider estimating a binary model.
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precision is approximately one order of magnitude lower than ZIP. The Monte Carlo results suggest, however,
that low levels of zero inflation can make the estimation of d quite difficult for PQL with 5000 observations. In
the corresponding entries of Table I, biases are approximately 25%. Higher levels of zero inflation visibly
mitigate this problem, although biases are still approximately 10%. With 50,000 observations, the performance
of PQL improves substantially. Although for b the picture is the same as with the smaller sample, PQL now
also obtains satisfactory estimates of d. However, some finite sample bias is still visible and the efficiency loss
relative to ZIP is still quite large.

The middle panel (“Quadratic overdispersion”) contains results obtained under the second setup where
unobserved heterogeneity is causing the parent model to exhibit quadratic overdispersion. As ZINB correctly
specifies the CEF and the variance function, the panel additionally includes results from this estimator. The
pattern for the ZINB ML estimates on 5000 observation samples echoes the one for the previous ZIP ML:
Although b is estimated quite precisely and free of bias, estimates of d are more noisy, especially in the low
zero-inflation case. Increasing the sample size to 50,000 improves ZINB’s performance. For instance, the bias
in d1, which is 7% and 4.3% for low and high zero inflation, respectively, is down to 4.8% and 3.2%. PQL’s
performance is quite remarkable here. Although with 5000 observations the same large biases as in the previous
setup are visible, in larger sample sizes the corresponding biases are smaller than those of the ZINB (2.9% and
1.6%). The estimates for b are quite similar for PQL and ZINB. However, the standard deviations of the PQL
are approximately one order of magnitude larger than those of the ZINB. The inconsistency of ZIP is reflected
in substantial biases in all reported mean estimates.

In the right-hand panel, the data are drawn from a process with additive overdispersion of y*, so that both ZIP
and ZINB only specify the CEF correctly. ZIP estimation again yields estimators that are not consistent for the
true value of b in any of the entries of Table I. The biases in the estimated d are very large, ranging up to 40%
for d1. Moreover, their persistency in the larger sample size unmasks them as asymptotic biases. The ZINB esti-
mator does not work well either. With 50,000 observations and 10% zero inflation, the average estimate for d1 is
biased downward by 11.3%. With 50% zero inflation, the bias for the same parameter is more than 15%, and in
addition, b displays a bias of 7.7%. By contrast, the performance of PQL is much better throughout. PQL’s
corresponding biases are only 1.3% for d1 and 0.1% for b. Indeed, a look at PQL’s results across the three panels
shows that the presence and form of overdispersion bears no effect on its performance.

As mentioned in Section 3.2, many consistent moment-based estimators can be obtained as alternatives to
PQL estimation which uses the functions h1(x, z) = x and h2(x, z) = p(z)z as instruments. For instance, NLS
estimation minimizes

Xn
i¼1

yi � expðx0ibÞ
ð1þ expðz0idÞ

	 
2

leading to h1(x, z) = [1�p(z)]l(x)x and h2(x, z) = p(z)[1� p(z)]l(x)z as instruments; that is, it weights PQL’s
moment conditions with the CEF, [1�p(z)]l(x). However, this estimator does not work well for the used
data-generating processes. Appendix B contains additional simulation results for this estimator in samples with
50,000 and 500,000 observations. Its results compare very poorly with PQL.3 An explanation for this is that the
CEF weighting implied by NLS down weights the observations with high probability of excess zeros (low
CEF), thus drastically reducing the information from which to estimate d. Accordingly, the largest biases of
the NLS estimator are for d and in setups with few excess zeros.

4.3. Further results without exclusion restrictions

In the simulations of Table I, q2, the regressor excluded from x, provides independent variation to the zero-inflation
process, an ideal setting. In applications, exclusion restrictions may often not be justifiable. To address this

3In addition to mean and standard deviation, the median is reported in Appendix B because mean estimates of NLS for n= 50, 000 are se-
verely distorted by outliers. For the other estimators discussed, mean and median are similar.
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issue, we repeated the simulations setting d2 = 0, that is, ridding the data-generating processes from the additional
regressor. The result is a specification with one regressor that enters both parts of the model. As discussed before,
the PQL estimator has now two solutions. To choose between them, we use the out-of-sample information that

in the data-generating process d1 = 1> 0 and always select the solution where the estimated coefficient d̂1 > 0.4

The results are not that different from those in the previous section. With 5000 observations, the ZIP ML esti-
mation of the ZIP model is adequate (left-hand panel, “No overdispersion”). Likewise, the ZINBML estimation of
the quadratic overdispersion process (middle panel) is comparable with that in Table I. However, at n=5000, PQL
estimation struggles with substantial finite sample bias and large standard deviations. As we will illustrate with the
application in the next section, however, PQL estimation with such sample sizes may not be problematic if addi-
tional regressors are available: variation from more regressors can help estimating the parameters more precisely.

When passing to the results corresponding to 50,000 observations, the improvement in PQL’s performance
is noteworthy. In settings with 10% zero inflation, PQL’s bias never exceeds 2%. In contrast, ZINB displays
biases of up to 4% in the quadratic overdispersion process, and up to 17.6% in the additive overdispersion setup
(right panel), ZIP performs even worse. With high zero inflation, some bias remains in PQL’s estimates, but its
magnitude is visibly smaller than those of misspecified ZIP and ZINB ML estimation.

To summarize, the results from the Monte Carlo experiments in this section demonstrate the robustness of the PQL
estimator in zero-inflated, finite samples and the biases that can arisewhen using its twomost commonML competitors.

5. ILLUSTRATION: DEMAND FOR PHYSICIAN SERVICES

We illustrate the PQL estimation of a count model with logit zero inflation in a well-known health economics
application. In particular, the goal is to estimate how health insurance affects the frequency of doctor visits. The

4For all estimators, we used the true values of the parameters as starting values for the optimization. The fraction of d̂1 estimated by PQL
that were negative was essentially zero.

Table II. Further Monte Carlo results: no exclusion restriction on regressors

Estimator

No overdispersion Quadratic overdispersion Additive overdispersion

10% zero inflation 50% zero inflation 10% zero inflation 50% zero inflation 10% zero inflation 50% zero inflation

b̂ d̂1 b̂ d̂1 b̂ d̂1 b̂ d̂1 b̂ d̂1 b̂ â1

n= 5000

ZIP 0.998 1.010 0.996 1.005 1.026 0.643 0.955 0.882 0.932 0.485 0.788 0.770
(0.048) (0.095) (0.133) (0.074) (0.060) (0.064) (0.150) (0.065) (0.059) (0.053) (0.148) (0.058)

ZINB 0.982 1.051 0.979 1.037 0.889 1.193 0.815 1.014
0.064 0.122 0.159 0.103 0.064 0.161 0.165 0.123

PQL 1.001 1.157 1.914 1.828 1.002 1.206 2.004 1.933 1.006 1.177 2.300 1.955
(0.279) (0.537) (5.054) (2.002) (0.312) (0.934) (5.876) (2.275) (0.293) (0.792) (7.712) (2.712)

n= 50,000

ZIP 1.000 1.003 1.001 1.001 1.026 0.637 0.962 0.880 0.932 0.480 0.795 0.768
(0.015) (0.030) (0.041) (0.023) (0.019) (0.020) (0.047) (0.020) (0.018) (0.016) (0.046) (0.018)

ZINB 0.983 1.040 0.989 1.028 0.890 1.176 0.825 0.997
0.020 0.036 0.049 0.031 0.020 0.047 0.052 0.036

PQL 0.997 1.017 1.060 1.063 0.998 1.019 1.075 1.074 0.997 1.018 1.080 1.067
(0.084) (0.071) (0.853) (0.170) (0.092) (0.078) (0.914) (0.182) (0.084) (0.072) (0.886) (0.183)

Note. Entries are the average estimates over replications. Standard deviations in parentheses. True values: b= d1 = 1.
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data set is identical to the one used by Cameron and Trivedi (1986). The sample of 5190 individuals is extracted
from the Australian Health Survey 1977–1978. The dependent variable is the number of consultations with a
doctor or specialist in the 2-week period before the interview. The mean is 0.302, and the variance is 0.637.
Further details, and a motivation of the selection of explanatory variables, are given by Cameron and Trivedi
(1986) and the references quoted therein (Table II).

Regressors include demographics (sex, age, and age squared), income, various measures of health status
(number of reduced activity days, general health questionnaire score, recent illness, chronic condition 1, and
chronic condition 2), and three types of health insurance coverage (Levyplus, Freepoor, and Freerepat—the
former representing a higher level of coverage and the latter two a basic level supplied free of charge).

Table III contains the regression results for the PQL estimator (in the first two columns) as well as for the fully
parametric ZIP (in columns 3 and 4) and ZINB (in columns 5 and 6) models. In each case, the same regressors
enter the logit model for zero inflation and the log-linear CEF of the parent model. As discussed earlier,
this means that the PQL estimator has two solutions. To identify the correct one, we must rely on out-of-sample
information: we surmise that individuals having experienced illnesses recently are more likely to be part of the
population in demand for doctor visits, which implies that the sign of the parameter on “illness” is negative—that
is, reducing the probability of an extra zero—and report this set of estimates as d.5

There is no significant difference in the magnitude of standard errors across models—the standard errors
of the ZIP are smaller than those of the ZINB and the PQL, the latter two being roughly similar. Thus, the
precision of PQL estimation should be fine although there are no exclusion restrictions.

A likelihood ratio test between ZIP and ZINB clearly favors the latter.6 Although this is an indication of the pres-
ence of unobserved heterogeneity and overdispersion, it does not mean, however, that the ZINB is the “right”model.
If the overdispersion is misspecified, the ZINB estimator is inconsistent, regardless of fitting the data better than ZIP.

It is reassuring, therefore, that the parameter estimates are quite insensitive to the choice of specification in
many instances, but there are exceptions. For instance, the ZINB model detects no statistically significant effect
of having a chronic health condition in either part of the model. Under PQL, the second indicator has large
negative and statistically significant effect on the probability of an extra zero and thus increases the expected
number of visits. Inferences from PQL and ZINB also differ regarding insurance status. “Freepoor” and
“Levyplus” are statistically significant in the ZINB but not so in the PQL model, suggesting some caution in
interpreting these effects.

6. CONCLUDING REMARKS

The main quantities of interest in most count data applications are the CEF, changes in the probability of
strategic zeros, and semi-elasticities of the parent count model with respect to some regressors. For instance,
all applications cited in Section 1 without exception limited the discussion of their estimation results in the
CEF and such effects. This article proposed a new approach based on PQL estimation as a way to estimate
these quantities without having to specify more than the CEF, as opposed to the full distribution as is necessary
with the traditional ZIP and ZINB ML estimators.

The key advantage of using PQL over ZIP and ZINB is its robustness to misspecification. Given the pervasive
uncertainty about the data-generating processes in practice, using estimators for ZI models seems unwise if
concerns about bias from higher-order misspecification exist. The relatively mild misspecifications of the
DGP presented in the Monte Carlo experiments frequently resulted in noticeable biases, suggesting that PQL
may be the better choice for estimating ZI models compared with ZI ML estimators in the absence of strong a
priori information about the DGP. This conclusion will be the more compelling the larger the data set at hand.

5If we are wrong, we are erroneously reporting PQL estimates of � d for the ZI part (and of b+ d for the parent process).
6Because the test involves a null hypothesis at the boundary at the parameter space, the likelihood ratio test statistic has a nonstandard dis-
tribution, namely, a probability mass of 0.5 at 0 and a half w21ð Þ distribution for positive values, see Chernoff (1954).
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APPENDIX A

STATA CODE FOR THE PQL ESTIMATION OF ZERO-INFLATED COUNT MODELS

The following Stata code first loads the program for the PQL estimation of zero-inflated count models,
pqlzi, and then exemplifies its use with a data set from the Stata Web site, fish.dta. The only purpose of
the example is to illustrate pqlzi’s use; the particular model estimated on these data is nonsensical. Program
pqlzi uses mean function pl instead of (1� p)l. We often found this to have better convergence properties.
It means that all the estimates from the binary part (eq 2-output) have the “wrong” sign. For example,
“�1.81" should be read as “1.81.” If preferred, this can be changed by deleting the two “+‘theta2’” bits
in the program.
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APPENDIX B

FURTHER MONTE CARLO RESULTS: NLS ESTIMATOR

No overdispersion Additive overdispersion

10% zero inflation 50% zero inflation 10% zero inflation 50% zero inflation

b̂ d1 d2 b̂ d1 d2 b̂ d1 d2 b̂ d1 d2

n= 50,000
Median 0.960 1.660 1.613 0.970 1.085 1.111 0.962 1.655 1.617 0.969 1.085 1.111
Mean 1.334 21.293 28.424 1.967 1.996 1.487 1.498 21.844 28.342 2.907 2.946 1.121
SD 4.760 45.678 65.868 11.936 11.301 9.257 10.924 47.189 63.599 24.130 24.039 0.311
n= 500,000
Median 0.969 1.178 1.223 0.977 1.030 1.044 0.971 1.170 1.232 0.977 1.029 1.043
Mean 0.976 1.175 1.225 1.076 1.086 1.018 0.977 1.173 1.221 1.070 1.081 1.020
SD 0.043 0.255 0.303 0.605 0.543 0.106 0.044 0.250 0.292 0.588 0.527 0.106

Note. 1000 replications for n= 50,000; 100 for n = 500,000. True values: b= d1 = d2 = 1.
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