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A CAUSAL INTERPRETATION OF EXTENSIVE AND INTENSIVE MARGIN EFFECTS IN
GENERALIZED TOBIT MODELS

Kevin E. Staub*

Abstract—This note proposes a new decomposition of average treat-
ment effects on nonnegative outcomes. It represents the total effect as a
population-weighted sum of the effects for two groups: those induced to par-
ticipate by the treatment and those participating regardless of it. The usual
decomposition into extensive and intensive margins used in the literature
is generally incompatible with such a causal interpretation. The difference
between decompositions can be substantial and yield diametrically opposed
results.

I. Introduction

MANY outcomes of interest in economics are nonnegative and
have a cluster of observations at the value 0.1 Prominent exam-

ples include working hours, health care demand, and expenditure data.
Researchers analyzing average treatment effects (ATE) on such out-
comes frequently take interest in decomposing the effects into the part
attributable to individuals starting to participate (called extensive mar-
gin) and the part attributable to already participating individuals (called
intensive margin). The decomposition used is algebraically straight-
forward, as it is based on factoring the expectation of the outcome
variable, say E(Y), into the participation probability Pr(Y > 0) and the
conditional expectation E(Y |Y > 0) (McDonald & Moffitt, 1980). The
extensive margin is driven by the participation effect (PE), the change
in the probability to participate; the intensive margin is driven by the
conditional-on-positives (COP) effect, the change in the outcome given
participation.

In contrast to the simplicity of the mechanical aspect, endowing the
decomposition with a causal interpretation is substantially more prob-
lematic. For instance, recent work framing the problem in terms of
Rubin’s potential outcomes model has pointed out that COP effects
do not measure the impact of a treatment on participating individuals;
rather, they are hopelessly contaminated by a sort of selection bias, even
in experimental settings (Angrist, 2001; Angrist & Pischke, 2009).

In this paper, I propose a conceptually different decomposition of
the ATE into extensive and intensive margins. It is based on stratifying
the population into groups defined by the joint distribution of potential
outcomes (Frangakis & Rubin, 2002), representing the total effect as an
average of the treatment effects for interesting groups of the population:
those induced to participate by the treatment and those participating
regardless of it. Unlike the conventional decomposition, the proposed
one is not identified nonparametrically. However, the structure imposed
in (nonparametric versions of) the censored regression model and the
selection model identifies the decomposition. A numerical example for
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1 Sometimes variables with these features are referred to as corner solution
outcomes (Wooldridge, 2002).

the tobit model, a special case of both models, shows that the differences
between decompositions can be major.

The parameters of interest discussed here are functions of the joint
distribution of potential outcomes, which cannot be rewritten as func-
tions of the marginal distributions, a problem considered early on by
Heckman, Smith, and Clements (1997) and recently by Fan and Park
(2009), among others. While the imposition of model structure to
achieve identification places this note closer to literature in the vein
of Heckman et al. (1997) than to the partial identification literature (see
Fan & Park, 2009, and references therein), I include a brief discussion of
simple bounds for the objects of interest. The contribution of this paper
lies in a conceptual definition of objects of interest and interpretation,
and it is thus close in spirit to Angrist (2001).

II. Nonnegative Variables and Potential Outcomes

Consider the variable Yi for individuals i = 1, . . . , N , where Yi ≥ 0
and Pr(Yi = 0) > 0. Let Y1i denote the potential outcome for i if
i received a binary treatment Ti(Ti = 1) and Y0i if Ti = 0, so that as
usual, Yi = Y0i +(Y1i −Y0i)Ti. A causal treatment effect is a comparison
of treatment and control potential outcomes for a common subset of
individuals (Frangakis & Rubin, 2002; Rubin, 2006). The focus here
will be on the average treatment effect [ATE] E(Y1i − Y0i). Assume
that the data come from an ideal randomized controlled trial, so that
assignment to treatment is random and compliance is perfect. Then Ti

is independent of (Y1i, Y0i), and ATE can be obtained from the prima
facie contrast E(Yi|Ti = 1) − E(Yi|Ti = 0). Using

E(Yi|Ti) = Pr(Yi > 0|Ti)E(Yi|Yi > 0, Ti),

this contrast can be written as

E(Yi|Ti = 1) − E(Yi|Ti = 0)

= {Pr(Yi > 0|Ti = 1) − Pr(Yi > 0|Ti = 0)}E(Yi|Yi > 0, Ti = 1)

+ {E(Yi|Yi > 0, Ti = 1) − E(Yi|Yi > 0, Ti = 0)} Pr(Yi > 0|Ti = 0).
(1)

This is the usual decomposition applied to limited dependent variables
like Yi in tobit (Tobin, 1958) or Cragg (1971) models (McDonald &
Moffitt, 1980; see also Cameron & Trivedi, 2005, Greene, 2008, and
Wooldridge, 2002). The first term on the right-hand side of equation
(1) is the extensive margin effect, which weights the PE—the term in
braces—by the expected Yi conditional on participation; the second
term is the intensive margin effect, which weights the COP (in braces)
by the probability of participation given Ti = 0.

Using the independence of Ti from Y1i and Y0i, the decomposition
can be rewritten in terms of potential outcomes as

E(Y1i) − E(Y0i) = {Pr(Y1i > 0) − Pr(Y0i > 0)}E(Y1i|Y1i > 0)

+ {E(Y1i|Y1i > 0) − E(Y0i|Y0i > 0)} Pr(Y0i > 0).
(2)

While the left-hand side, ATE, is a causal effect, the second compo-
nent on the right-hand side is not. COP compares the average outcome
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under treatment of one subpopulation (that with positive outcomes under
treatment) to the average control outcome of a potentially different
subpopulation (that with positive outcomes without treatment). Unless
treatment does not induce any individuals to switch from positive to 0
or from 0 to positive outcomes, the subpopulations involved in the COP
contrast will be different.

One approach to addressing this problem would be to distill a causal
effect for the subpopulation with Y1i > 0.2 However, a treatment effect
for that population is not an object of interest in a decomposition into
extensive and intensive margins: The ATE for individuals with Y1i > 0
mixes the ATE for the very two subpopulations the decomposition sets
out to discriminate—the one participating even without treatment and
the one participating because of the treatment.

A. Decomposition Based on Joint Outcomes

Consider the following stratification of individuals into nonoverlap-
ping and exhaustive subpopulations based on their joint distribution of
potential outcomes, (Y0i, Y1i):

Group Name Potential Outcomes

NP Nonparticipants (Y0i = 0, Y1i = 0)

S1 Switchers (Y0i = 0, Y1i > 0)

S2 Switchers (Y0i > 0, Y1i = 0)

P Participants (Y0i > 0, Y1i > 0)

Basing the definition of intensive and extensive margin effects on these
groups clarifies their meaning substantially. The intensive margin effect
is the contribution to the ATE of group P. Similarly, the extensive margin
is the ATE contribution of switchers—those changing their participa-
tion status (groups S1 and S2). These are the objects of interest when
decomposing causal effects into extensive and intensive margins. When
researchers write about them, it is this that they mean (although they
rarely state it so explicitly). For instance, take the labor economics
example of working hours. The effect of a policy intervention increas-
ing average working hours in the economy can be decomposed into
(a) the average change in hours worked of those working regardless of
the intervention, plus (b) the average hours worked by those joining
the workforce because of the intervention, minus (c) the average hours
worked by those leaving the workforce because of the intervention, with
the groups in these three categories being weighted by their population
fraction.

Thus, the decomposition of the ATE based on the joint distribution
of potential outcomes is

E(Y1i) − E(Y0i) = EY1i ,Y0i [E(Y1i − Y0i)|Y1i, Y0i] (3)

= E(Y1i|Y0i = 0, Y1i > 0) Pr(Y0i = 0, Y1i > 0)

+ E(−Y0i|Y0i > 0, Y1i = 0) Pr(Y0i > 0, Y1i = 0)

+ E(Y1i − Y0i|Y0i > 0, Y1i > 0) Pr(Y0i > 0, Y1i > 0).

The expectation over (Y1i, Y0i) is with respect to the four events NP, S1,
S2, and P. The last term is the intensive margin effect (IME), and the first
two are the extensive margin effect (EME). The effect for individuals
in group NP is always 0.

2 Angrist (2001) and Angrist and Pischke (2009) write COP as this causal
effect, E(Y1i − Y0i|Y1i > 0), plus a selection bias term.

B. Nonparametric Identification

Group membership being unobserved, the population fractions are
not identified from the data on treatment and outcome. This is a common
occurrence in principal stratification contexts such as this one (Fran-
gakis & Rubin, 2002; Rubin, 2006). To see this, denote the population
fraction for P as πP, the one for S1 as πS1 , and so on. Then,

Pr(Yi = 0|Ti = 0) = πNP + πS1 , Pr(Yi = 0|Ti = 1) = πNP + πS2 ,

Pr(Yi > 0|Ti = 0) = πP + πS2 , Pr(Yi > 0|Ti = 1) = πP + πS1 .

Restricting one of the population fractions to 0 identifies the remaining
three fractions from these conditional probabilities. Often researchers
choose models possessing some monotonicity assumption on the way
treatment affects outcomes (Manski, 1997), which can typically lead to
the elimination of one group out of S1 and S2. Thus, for the rest of the
discussion, suppose πS2 = 0 as a result of some particular monotone
treatment response assumption (MTR).3

An example of MTR is when the causal effect is nonnegative for all:
Y1i − Y0i ≥ 0, ∀i. Call this assumption MTR1. MTR1 is embedded in
the tobit model. The elimination of S2 is compatible with other MTR
assumptions, such as the one implicit in the selection model of Heck-
man (1979) and two-part models of Cragg (1971) or Duan et al. (1983):
the causal effect is nonnegative for switchers (if there exist switchers,
they are all members of S1), and is either positive, 0, or negative for
all members of group P. Call this assumption MTR2. Often assump-
tions such as these are motivated by economic theory, and for many
applications it might be plausible to impose them.

Defining mean potential outcomes of switchers as (Ȳ
S1
0 , Ȳ

S1
1 ) and

those of participants as (Ȳ P
0 , Ȳ P

1 )—for instance, Ȳ
S1
1 = E(Y1i|Y0i =

0, Y1i > 0)—the decomposition of ATE in equation (3) can be written
as

ATE = πS1 Ȳ
S1
1 + πP(Ȳ P

1 − Ȳ P
0 ) = πS1 ATES1 + πPATEP. (4)

While ATE, πS1 , πP, and Ȳ P
0 are all identified from the data,4 the

problem is identification of Ȳ
S1
1 and Ȳ P

1 for which the data provide only
one quantity, E(Yi|Yi > 0, Ti = 1):

E(Yi|Yi > 0, Ti = 1) = ωS1 Ȳ
S1
1 + (1 − ωS1)Ȳ P

1 ,

ωS1 = πS1

πS1 + πP
.

Thus, it is not possible to attribute a fraction of ATE to the extensive or
intensive margin without making more assumptions.5 However, under
MTR1 or MTR2, simple informative bounds for ATES1 and ATEP are
available.

For instance, assume MTR1 holds (Y1i − Y0i ≥ 0 ∀i), implying ATE
is positive. The domain of ATES1 and ATEP is the positive real line

3 The case πS1 = 0 is symmetric and will be omitted for brevity. Note that
assuming πS2 = 0 is equivalent to (a) assuming that either πS1 or πS2 is 0,
and (b) Pr(Yi > 0|Ti = 1) − Pr(Yi > 0|Ti = 0) > 0. The latter can be
verified in the data.

4 πS1 = Pr(Yi > 0|Ti = 1)−Pr(Yi > 0|Ti = 0), πP = Pr(Yi > 0|Ti = 0),
and Ȳ P

0 = E(Yi|Yi > 0, Ti = 0).
5 To the extent that group membership is time invariant, the availability

of panel data would identify the decomposition because individuals with
transitions between 0 and positive outcomes could be identified as switch-
ers. However, if group membership is partly determined by idiosyncratic
shocks, panel data do not solve the identification problem.
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(0, ∞). Substituting the limits of these intervals into equation (4), the
identification regions for the objects of interest reduce to

ATES1 ∈ (
0, ATE/πS1

)
, ATEP ∈ (

0, ATE/πP
)

, (5)

which are strictly smaller than the domains.
Now consider bounds under MTR2. MTR2 stated that πS2 = 0 and

that treatment effects for all i in group P had the same sign. Thus,
this assumption allows both negative or positive ATE, and the bounds
depend on ATE’s sign.

If ATE > 0, this is possible even with ATEP < 0 (since ATES1

is positive by definition). In this case, the domain of ATEP widens to
(−Ȳ P

0 , ∞), leading to a larger interval for ATEP:

ATES1 ∈ (
0, ATE/πS1

)
, ATEP ∈ (−Ȳ P

0 , ATE/πP
)

. (6)

In contrast, if ATE < 0, this means ATEP must be negative with domain
(−Ȳ P

0 , 0). For ATES1 the domain is still the positive real line. The
identification regions are

ATES1 ∈ (
0, (ATE + πPȲ P

0 )/πS1
)

, ATEP ∈ (
ATE/πP, 0

)
. (7)

Thus, for a given absolute value of ATE, the bound for ATES1 is narrower
in this case than in equations (5) and (6). Note that −Ȳ P

0 = ATE/πP −
πS1 ATES1/πP − Ȳ P

1 < ATE/πP, and therefore, as in equations (5) and
(6), the bound on ATEP in equation (7) is informative.6

The bounds in equations (5), (6), and (7) are sharp.7 The line ATES1 =
ATE/πS1 − πP/πS1 ATEP in the (ATES1 , ATEP)-plane provides sharp
bounds on the components jointly.

III. Decomposing ATE in Some Structural Models

The decomposition based on joint potential outcomes is point-
identified for two general classes of models often used in econometric
studies, which impose some structure on the way treatment affects
outcomes. These models do not require parametric restrictions on the
distribution of the errors or on the way treatment (and other exogenous
regressors) enters the model, although in practice, researchers some-
times prefer using parametric versions of these models. After briefly
discussing the two nonparametric models, this section provides an illus-
trative example of the decomposition for the tobit model, an important
parametric special case of both general models.

A. Censored Regression Model

Consider the model,

Yi = max[0, m(Xi) + Ui], (8)

where Xi is a vector of regressors and Ui is an unobserved error indepen-
dent of Xi with E(Ui) = 0; both the function m(·) and the distribution
of the errors FU(·) are unknown. Lewbel and Linton (2002) show that
the unknown functions are identified and provide estimators for them.

In the simplest case considered here, Xi contains only the binary
treatment indicator, so without loss of generality, m(Ti) = β0 + β1Ti.

6 Note that under MTR2, the bounds depend discontinuously on whether
ATE is positive or negative. This might make inference difficult when ATE
is close to 0.

7 It is easy to verify that the following DGP, for instance, attains all values
in the bounds: for a fraction πNP of the population Y1i = Y0i = 0; for a
fraction πS1 , Y1i = α1 > 0, Y0i = 0; for a fraction πP, Y1i = β0 + β1 >
0, Y0i = β0 > 0; and πNP + πS1 + πP = 1.

Figure 1.—Population Groups by Ui in the Censored

Regression Model

The censored regression model in this figure is Yi = max(0, β0 + β1Ti + Ui), with β1 > 0.

Consider the case β1 > 0, which implies that Yi is nondecreasing in
Ti, conforming to MTR1. Population group membership is completely
determined by the realization of Ui, as illustrated in figure 1. The first
column in table 1 contains some features of the decompositions in this
model.8 The population fractions of switchers and participants in the
causal decomposition, equation (4), coincide with the terms used in
the conventional decomposition, equation (2). However, decomposition
(2) fails to attribute them the correct ATE. For instance, for switchers,
decomposition (2) assigns as ATE the average Yi in the population of
switchers and participants (see the ÃTE

S1 row in table 1). Thus, this
invariably overestimates their contribution, as switchers’ Ui are in the
bottom tail of the error distribution among those with Y1i > 0.

B. Selection Model and the Two-Part Model

The selection model can be understood as a generalization of the
censored regression model. One general version of it is

Yi = 1[g(Xi, Zi) + Vi ≥ 0] × (m(Xi) + Ui), (9)

where1(·) is the indicator function; Ui, Vi are independent of Xi, Zi; and
m(Xi) + Ui is positive whenever the indicator function equals 1. Com-
pared to equation (8), this model allows the probability of participation
to be driven by a different function g(·) and by different unobservables.
Thus, effects for switchers and participants might be differently signed,
as in MTR2. In turn, identification requires an additional continuous
variable, Zi, which affects the participation probability only. Identifica-
tion, regularity conditions, and estimation of equation (9) are discussed
in Das, Newey, and Vella (2003). Tight parameterizations of equation
(9), such as in Heckman (1979), can eliminate the need for Zi for iden-
tification. The second column in table 1 displays the components of
the decomposition corresponding to the selection model. The expres-
sions closely resemble those corresponding to the censored regression
model, but the increased flexibility stemming from having two errors
can lead to the conventional decomposition over- or underestimating
either causal margin.

An interesting restriction on the distribution of the errors is assuming
that Ui and Vi are independent, in which case equation (9) is known
as the two-part model (Cragg, 1971; Duan et al., 1983).9 Then the
conditional error expectations in table 1 are the same for switchers

8 For compactness, table 1 uses the notation m0 and m1 for m(0) = β0 and
m(1) = β0 + β1.

9 Zi is not needed for identification under independence of Ui and Vi.
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Table 1.—Features of Decompositions in Structural Models

Censored Regression Model Selection Model Tobit Model
(Equation [8]) (Equation [9]) (Equation [10])

Population fractions of groups (in both decompositions)
πS1 FU (−m0) − FU (−m1) FV (−g0) − FV (−g1) Φ1 − Φ0

πP 1 − FU (−m0) 1 − FV (−g0) Φ0
Group-specific ATE in causal decomposition (equation [4])

ATES1 m1 + E[U| − m1 < U < −m0] m1 + E[U| − g1 < V < −g0] β0 + β1 + σ
φ1−φ0
Φ1−Φ0

ATEP m1 − m0 m1 − m0 β1
Corresponding quantities in conventional decomposition (equation [2])

ÃTE
S1 m1 + E[U|U > −m1] m1 + E[U|V > −g1] β0 + β1 + σφ1/Φ1

ÃTE
P

m1 − m0 + E[U|U > −m1] − E[U|U > −m0] m1 − m0 + E[U|V > −g1] − E[U|V > −g0] β1 + σφ1/Φ1 − σφ0/Φ0

mT = m(T), gT = g(T , Z), ΦT = Φ((β0 + β1T)/σ), and φT = φ((β0 + β1T)/σ) for T = 0, 1. Φ(·) is the standard normal cdf, φ(·) the standard normal pdf.

and participants, and the two decompositions coincide. However, the
independence assumption might be unwarranted in most applications.
While randomization prevents dependence between treatment and the
errors, there is no experiment that could possibly break the potential
dependence between Ui and Vi—and applications where the researcher
can be certain that this dependence is absent seem difficult to envision.

C. An Example: Tobit Model

Consider a numerical example to illustrate the difference that using
the decomposition based on joint potential outcomes can make. Suppose
the DGP is the tobit model:

Yi = max[0, β0 + β1Ti + Ui], Ui ∼ N(0, σ2). (10)

Features of the decompositions for equation (10) are depicted in the
third column of table 1.

Let β0 = 0, β1 = 1, σ2 = 1. Then the ATE is about 0.68. The
conventional decomposition assigns about 0.24 to the intensive and
0.44 to the extensive margin effect. In contrast, the decomposition into
causally meaningful margins reveals that 0.5 is due to the intensive
and only 0.18 due to the extensive margin effect. The intensive margin
contribution, which was only 36% using the old decomposition, is thus
really 73%.10

Similarly stark discrepancies are possible in practice. For instance,
McDonald and Moffitt’s (1980) application examined the effect of a
negative income tax on working hours reductions by estimating a tobit
model. Using their decomposition, it assigned 22% of the estimated
reduction in working hours to the extensive margin. A follow-up article
by Moffitt (1982) reevaluated the same data. In this article, he modi-
fied the tobit model to account for a model of labor market frictions.
Incidentally, this leads to the same formulas for the decomposition as
the ones using the decomposition based on joint outcomes presented in
table 1. Applying this decomposition, he now concluded that the exten-
sive margin was responsible not for 22% but for 84% of the reduction.
This paper shows that even in the absence or misspecification of the
specific labor market frictions model postulated in Moffitt (1982), the
causal extensive margin contribution is 84%.

IV. Conclusion

The analysis can easily be extended in several dimensions. First, the
arguments presented here carry over to the average treatment effect

10 The bounds on ATES1 (=1) and ATEP(=0.54) under MTR1 discussed
in the previous section are ATES1 ∈ (0; 1.99) and ATEP ∈ (0; 1.36).

on the treated if treatment is assumed independent from Y0 only. Sec-
ond, the models of section III readily allow for a continuous treatment
and the inclusion of covariates. Third, the causal decomposition can
be applied to other mixture models estimated from cross-section data
where changes between outcomes of 0 and participation are of special
interest; examples include hurdle models for count data or mixtures of
a binary (participation) variable with an ordered response.

Finally, note that distributions of covariates Xi conditional on group
membership are identified under MTR, since then random samples of
nonparticipants and participants are available (individuals with Yi =
0, Ti = 1 and with Yi > 0, Ti = 0, respectively).11 Such knowledge
about group characteristics might be especially relevant for policies
targeted at specific population groups.

11 The distribution of Xi for switchers can be recovered indirectly from
the unconditional distribution, the distributions for nonparticipants and for
participants, and the population fractions.
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