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Abstract Many empirical gravity models are now based on generalized linear models
(GLM), of which the poisson pseudo-maximum likelihood estimator is a prominent
example and themost frequently used estimator. Previous literature on the performance
of these estimators has primarily focussed on the role of the variance function for the
estimators’ behavior. We add to this literature by studying the small sample perfor-
mance of estimators in a data-generating process that is fully consistent with general
equilibrium economic models of international trade. Economic theory suggests that
(1) importer- and exporter-specific effects need to be accounted for in estimation, and
(2) that they are correlated with bilateral trade costs through general equilibrium (or
balance-of-payments) restrictions. We compare the performance of structural estima-
tors, fixed effects estimators, and quasi-differences estimators in such settings, using
the GLM approach as a unifying framework.

Keywords Gravity models · Generalized linear models · Fixed effects

The authors gratefully acknowledge helpful comments by Badi Baltagi, Michael Pfaffermayr, João Santos
Silva, and two anonymous reviewers on an earlier version of the manuscript. Egger acknowledges funding
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1 Introduction

Models of international trade often imply a gravity equation for bilateral international
exports of country i to country j (Xij),

Xij = Ei M j Ti j ,

where Ei and Mj are exporter-specific factors (a function of goods prices and mass of
suppliers) and importer-specific factors (a function of the price index and total expen-
ditures on goods), and Tij are bilateral, pair-specific factors (a function of country-pair-
specific consumer preferences and ad-valorem trade costs). Examples include Eaton
and Kortum (2002), Anderson and vanWincoop (2003), Baier and Bergstrand (2009),
Waugh (2010), Anderson and Yotov (2012), Arkolakis et al (2012), and Bergstrand
et al (2013). Baltagi et al (2014) and Head and Mayer (2014) provide recent surveys
of this literature.

Writing ei = ln Ei , mj = lnMj , tij = ln Ti j , and using the parametrization ti j =
d ′
i jβ, where di j is a vector of observable bilateral variables and β a conformable vector
of parameters, empirical models of the gravity equation follow the general structure

E(Xij|ei ,mj , dij) = exp(ei + m j + d ′
ijβ). (1)

Thus, there are two departures from the original equation. The first relates to the
parametrization of the unknown tij in terms of observables. The linear index structure
coupled with the exponential function allows the inclusion of variables in a flexible
way, while giving the elements of β the convenient interpretation of direct (semi-)
elasticities of exports with respect to the variables in dij and restricting the domain of
exports to be positive. The second departure from the original is that the relationship
is stochastic and assumed to hold (only) in expectation. The stochastic formulation
implies an error term which makes the relationship between Xij and its specified
expectation E(Xij|ei ,m j , dij) exact. Thus, the conditional expectation (1) implies two
equivalent representations with stochastic errors, either additive or multiplicative:

Xij = exp(ei + mj + d ′
ijβ) + εij = exp(ei + m j + d ′

ijβ)ηij, (2)

where ηi j = 1 + εi j exp(−ei − mj − d ′
i jβ). Together with (1), this implies that

E(εi j |ei ,mj , di j ) = 0 for the additive error εi j , and similarly E(ηi j |ei ,m j , di j ) = 1
for themultiplicative errorηi j , i.e., these errors aremean-independent of the covariates.
The goal of this paper is to discuss a number of estimators which are consistent,
if model (1) is correctly specified and explore their small-sample properties under
varying distributions of ηi j . This is a subject which has attracted considerable attention
recently, and the body of work studying the performance of estimators of gravity
models for trade includes Santos Silva and Tenreyro (2006, 2011), Martin and Pham
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(2008), GómezHerrera (2013),Martínez Zarzoso (2013), andHead andMayer (2014),
among others.

This paper offers three additions to this literature. First, it uses a data-generating
process (DGP)which corresponds to a general equilibriummodel of international trade
as the basis forMonte Carlo simulations. Themodel of international trade is calibrated
to match some features from real-world data. Thus, unlike the previous literature, the
performance of estimators is analyzed in a setting with exporter- and importer-specific
effects which are correlated with di j , as suggested by economic theory and as imposed
in all applied structural work on gravity models (e.g., in Anderson and van Wincoop
2003, or Bergstrand et al 2013).1 Second, apart from estimators used by the previ-
ous literature, the comparison also includes (1) iterative-structural estimators which
fully exploit information from the underlying economic general equilibrium model of
international trade, and (2) estimators based on quasi-differenced moment conditions
recently proposed by Charbonneau (2012). Third, we provide a unified discussion of
the available estimators within the framework of generalized linear models (GLM).
As exemplified in an application to a cross section of 94 countries in the year 2008,
the GLM framework can be useful for choosing between competing estimators.

Because our focus is on consistent estimators of the gravity Eq. (1), one common
estimator which we will ignore is the OLS estimator of the regression with dependent
variable ln Xi j . The log-linearized OLS estimator will generally deliver inconsistent
estimates for β, even if the true model is (1). A lucid exposition of this issue is
given in Santos Silva and Tenreyro (2006). Following their illustration, note that the
logarithmized equation for bilateral exports is

ln Xij = ei + mj + d ′
ijβ + ln ηij,

and OLS estimation will only be consistent if E(ln ηi j |ei ,m j , di j ) = 0. But, as (2)
makes clear, ln ηi j is a function of the covariates and εi j , and so in general the condition
for consistency of OLS will be violated if the conditional expectation function is
exponential as in (1).

In this paper, we examine economic models where the conditional distribution of
bilateral trade does not have anymass point at zero.While zero trade flows are common
in disaggregated data and in whole-world country-level datasets, an important area of
research focusses on trade within more integrated country-blocks where zero trade
flows are less prevalent and the number of observations is small to moderate. Our
study speaks primarily to this literature.2 While the estimators discussed in our paper
can handle zero trade flows, one may want to rely on alternative models, e.g two-part

1 In some of the aforementioned work, e.g., in Eaton and Kortum (2002) or Waugh (2010) structural
constraints are assumed by the underlying theory but not imposed in estimation. As shown by Fally (2014),
estimation with fixed effects is consistent with such structural constraints if adding-up constraints are
imposed on trade flows, or the model is estimated by a Poisson regression.
2 Examples include Eaton and Kortum (2002), Anderson and van Wincoop (2003), Aviat and Coeurdacier
(2007), Dekle et al (2007), Baier and Bergstrand (2009), Novy (2013), and Bergstrand et al (2013), among
many others. In the applications cited, the number of countries (or other geographical units such as provinces
or states) ranges from about 20 to 40 and zero trade flows are rare.
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models, for an analysis with mass points in bilateral exports or imports (see Egger
et al 2011; Santos Silva et al 2015).

Approaches that estimate Eq. (1) consistently are discussed below in Sect. 2. The
Monte Carlo setup and results from the simulation study are presented in Sect. 3,
followed by an application with real-world data in Sect. 4. We summarize and discuss
our findings in Sect. 5.

2 Estimation of gravity models of bilateral trade

In gravity equations derived from economic models of trade, the exporter- and
importer-specific effects ei andmj are functions of the bilateral-specific trade costs ti j .
This implies that the exporter- and importer-specific terms are, in general, correlated
with the bilateral variables di j . Thus, gravity model estimates omitting these terms—
as had been done in most gravity applications in the previous millennium—will be
biased in general.

Approaches which do allow for dependence between exporter- and importer-
specific effects are structural estimation and fixed effects estimation. Structural esti-
mation explicitly specifies the exporter- and importer-specific terms as a function of
the economic model’s variables, accruing to adding-up or resource constraints. In
contrast, the fixed effects approach is to leave the relationship between di j and the
exporter- and importer-specific terms –the fixed effects– unspecified and is thus con-
sistent regardless of the nature of their dependence. Within this approach, there are
two ways of handling the fixed effects. The first way is to estimate β from moment
conditions which are derived from (1) but which do not depend on the fixed effects.
The second way treats the fixed effects as parameters to be estimated. Although both
fall into the fixed effects domain, for convenience we will from now on refer to esti-
mators under the first approach as quasi-differences estimators and to the ones under
the latter approach as fixed effects estimators.

Structural estimators—i.e., ones that impose the nonlinear gravity model structure
in estimation rather than utilizing fixed country effects—fully exploit the information
on the data-generating process, estimate fewer parameters, and are thus potentially
more efficient than other approaches such as fixed country effects estimators. For
instance, Eaton and Kortum (2002), Waugh (2010), Egger et al (2011), or Egger et al
(2012) do not impose the model structure in estimation but employ fixed effects. In
contrast to that, Anderson and van Wincoop (2003), Bergstrand et al (2013), or Egger
and Nigai (2014) estimate structural models where non-linear price (general equilib-
rium) terms are solved iteratively in estimation. To be consistent, iterative-structural
approaches require the underlying economic model to be correctly specified. On the
other hand, quasi-differences estimators and fixed effects estimators are consistent
under much weaker assumptions. The quasi-differences approach has the feature of
avoiding estimating a potentially large number of parameters. This can be an advan-
tage because estimation of the set of fixed effects can be both computationally difficult
and lead to less precise estimates. On the other hand, some objects of interest (such
as predictions and average marginal effects) are functions not only of β, but also of
ei and m j . Without having estimates of these fixed effects, it may be impossible to
recover estimates for such objects of interest. Moreover, since fixed effects may cap-
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ture structural model variables but also factors outside of the model, the associated
results are harder to interpret than iterated structural model estimates.

An important drawback of fixed effects estimators of nonlinear models is that they
suffer from the incidental parameters problem. In particular, the trade gravity equa-
tion is subject to the “large-N large-T”-version of the incidental parameters problem
that invalidates inference based on the asymptotic distribution (see Hahn and Newey
2004; Fernández-Val and Weidner 2013). Our Monte Carlo results of Sect. 3 point in
this direction, showing that t-statistics obtained from fixed effects estimators are not
centered around zero even when β is virtually unbiased.3

Webegin bydiscussing theGLMapproach (Sect. 2.1),which can be used to estimate
a variety of fixed effects and structural estimators, and in principle even serve as a
“wrapper” for some quasi-differencedmoment conditions. To fix ideas, we explain the
GLM approach in the context of fixed effects estimation. Then, we discuss structural
and quasi-differences estimation in some more detail in Sects. 2.2 and 2.3.

2.1 GLM estimation of gravity models with fixed effects

Nonlinear models with a linear index, such as (1), can be estimated consistently
by a host of so-called generalized linear model (GLM) estimators. These models
have a common structure, as is well-known and outlined briefly in this section. The
GLM framework (Nelder and Wedderburn 1972; McCullagh and Nelder 1989) is a
likelihood-based approach that remains consistent for the parameters of interest as long
as the conditional expectation function is correctly specified. It is widely used to esti-
mate nonlinear models in statistics (see for instance Adams et al 2004, and references
therein), and many econometric applications can be cast in the GLM framework (for
examples in international economics, see Santos Silva and Tenreyro 2006; Bosquet
and Boulhol 2009; Anderson and Yotov 2010, 2012; or Mélitz and Toubal 2014).

GLM is based on likelihood estimation of potentially misspecified densities of the
linear exponential family (LEF) of distributions, which includes the Poisson, Negative
Binomial, Gamma, Normal, and other distributions. A GLM estimator is determined
by (1) the specification of a link function—which governs the relationship between
the conditional expectation function and the linear index of covariates—together with
(2) the specification of a family, a density from the LEF.

Let us view ei and m j under the fixed effects approach, where the fixed effects
are parameters to be estimated. The distribution of Xi j is part of the LEF class if its
density can be written as

3 This is different from the better-known “fixed-T large-N”-version of the incidental parameters problem
which constitutes an inability to estimate the so-called nuisance parameters (the fixed effects in this context)
consistently—an inconsistency that passes over to the “common parameters” (β in this context). In the
gravity equation setup, both dimensions (numbers of exporter and importers) increase as the number of
countries C increases. For every additional country, there are 2× (C − 1) additional observations but only
2 additional parameters (eC and mC ). Thus, all parameters are estimated with less bias as C increases. The
source of the incidental parameters problem here is the fact that the rate of convergence for the “common
parameters” ei and m j is slower.
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f (Xi j ) = exp

{
Xi jθi j − b(θi j )

a(φ)
+ c(φ, Xi j )

}
,

with parameters θi j = (β ′, ei ,mj )
′, φ (which we will later show to be related to the

variance of Xi j , denoted as V (Xi j )), and arbitrary functions a(·), b(·) and c(·). Such
a random variable will have the log-likelihood

l(θi j ) = Xi jθi j − b(θi j )

a(φ)
+ c(φ, Xi j ),

and score

s(θi j ) = ∂l(θi j )

∂θi j
= Xi j − b′(θi j )

a(φ)
.

A fundamental result of likelihood theory is that the expected score evaluated at the
true value of the parameter is zero. For members of the LEF, this implies

E[s(θi j )] = E(Xi j ) − b′(θi j )
a(φ)

= 0,

and, therefore, E(Xi j ) = b′(θi j ) ≡ μi j . In GLM estimation, the mean of Xi j , μi j ,
is specified as a function of a linear index, in our context d ′

i jβ + ei + m j , so that

μi j = g−1(d ′
i jβ + ei +m j ), or g(μi j ) = d ′

i jβ + ei +m j . This function, g(·), is called
the link function. The gravity model (1), consequently, implies a log-link.

A second result from likelihood theory, the information matrix equality, allows to
derive the variance function. The Hessian of an LEF random variable is

H(θi j ) = ∂2l(θi j )

∂θ2i j
= −b′′(θi j )

a(φ)
.

By the information matrix equality, V [s(θ)] = −E[H(θ)], and therefore

E[Xi j − b′(θi j )]2
a(φ)2

= b′′(θi j )
a(φ)

,

which is equivalent to V (Xi j ) = b′′(θi j )a(φ).
The parameter vector θ is estimated by maximizing the sample (quasi-)likelihood

function

lC (β) =
C∑
i=1

C∑
j=1

Xi jθi j − b(θi j )

a(φ)
+ c(φ, Xi j ),

with corresponding score for β
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Table 1 Variance functions
V (Xi j ) and F.O.C. weights wi j
of some GLM gravity estimators

Estimator V (Xi j ) wi j

Poisson μi j 1

Gamma μ2
i j μ−1

i j

Negative Binomial μi j + μ2
i j (1 + μi j )

−1

Gaussian 1 μi j

Inverse Gaussian μ3
i j μ−2

i j

sC (β)=
C∑
i=1

C∑
j=1

Xi j − b′(θi j )
a(φ)

∂θi j

∂β
= Xi j − b′(θi j )

a(φ)

∂θi j

∂μi j

∂μi j

∂β
= Xi j − b′(θi j )

b′′(θi j )a(φ)

∂μi j

∂β
.

Analogous equations hold for ei andm j . The last equality follows fromμi j = b′(θi j ).
Thus, the first-order conditions sN (β) = 0 can be written as

C∑
i=1

C∑
j=1

[
Xi j − E(Xi j )

]
V (Xi j )

∂E(Xi j )

∂β
= 0. (3)

Equation (3) shows that GLM estimators are moment estimators based on the condi-
tional expectation residual (the expression in square brackets). As long as the expec-
tation function is correctly specified, they will be consistent for β. Equation (3) also
shows that GLM estimators weight the residuals in the first-order conditions by the
inverse of the variance, V (Xi j ). Therefore, relative efficiency gains – but not consis-
tency of β – depend on the correct specification of the variance function. Different
choices of the LEF distribution (i.e., of the family) lead to different variance functions.

As mentioned above, gravity models use the log-link function, so that in general
the first-order conditions for β in models based on (1) have the form

C∑
i=1

C∑
j=1

[
Xi j − exp(ei + m j + d ′

i jβ)
]

V (Xi j )
exp(ei + m j + d ′

i jβ)di j = 0. (4)

The first-order conditions for the fixed effects are given in the Appendix.
Various distributions are suitable candidates for gravity models in the sense that

they are members of the LEF and that they imply variance functions V (Xi j ) that are
potentially compatiblewith bilateral export flows. Poisson andGammaestimators have
been discussed in Santos Silva and Tenreyro (2006) and others; estimators based on
Gaussian, inverse Gaussian, and Negative Binomial quasi-likelihood are also possible
and have been used in the literature, though much less so than Poisson and Gamma
estimators. The implied variance functions, in terms of the conditional expectation
function μi j , are given in Table 1. Because of the exponential function, the derivative
∂E(Xi j )/∂β is μi j di j . The column on the right of the table reports the weight given in
the first-order conditions to the residual of country-pair i j , i.e.,wi j = μi j di j/V (Xi j ).
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144 P. H. Egger, K. E. Staub

Thus, as pointed out by Santos Silva and Tenreyro (2006), the Poisson estimator
weights every observation equally, which might be optimal when wanting to remain
agnostic with respect to higher-order specification. The other estimators in Table 1,
with the exception of the Gaussian one, down-weight observations with larger means.
If these observations are also noisier in the sense of having a larger variance, this
would result in efficiency gains. In contrast, the Gaussian estimator gives more weight
to country-pairs with larger expected exports, a weighting scheme which might be
beneficial, for instance, if there are trustworthiness issues with small trade flows.4 The
Gaussian-GLM gravity estimator is equivalent to the nonlinear least squares (NLS)
estimator of (1).5

2.2 Iterative-structural estimation

A structural approach to estimating the gravity equationmakes use of economic theory.
Most modern gravity models assume resource constraints of the form

E

⎡
⎣ C∑

j=1

Xi j

⎤
⎦ = E

⎡
⎣ C∑

j=1

exp(ei + m j + d ′
i jβ)

⎤
⎦=E

⎡
⎣exp(ei )

C∑
j=1

exp(m j + d ′
i jβ)

⎤
⎦
(5)

and

E

[
C∑
i=1

Xi j

]
= E

[
C∑
i=1

exp(ei + m j + d ′
i jβ)

]
= E

[
exp(m j )

C∑
i=1

exp(ei + d ′
i jβ)

]
.

(6)
Hence, (5) and (6) imply that the country-specific effects ei and m j are implicitly
fully determined given data on Xi j and di j together with estimates of β. Clearly, this
implies that E[ei di j ] �= 0, E[m jdi j ] �= 0, and E[eim j ] �= 0 according to economic
theory.6

In our Monte Carlo study, we will employ data-generating processes that respect
this feature. Specifically, we will consider an endowment economy. Many data-
generating processes considered in the literature are isomorphic to the one of endow-
ment economies (see Anderson and van Wincoop 2003, for such an approach; and
Eaton and Kortum 2002; Arkolakis et al 2012; Bergstrand et al 2013, for isomorphic
processes).

4 Such trade flows may emerge particularly with or among less developed countries, where reporting
standards are poor. For instance, Egger and Nigai (2014) illustrate that structural parameterized GLM
gravity models tend to predict large bilateral trade flows with much smaller error than small trade flows.
5 TheNegativeBinomial estimator is only anLEFmember for a given valueof the overdispersion parameter,
say α in μi j + αμ2

i j . In Table 1 and in what follows, we consider the Negative Binomial GLM estimator
with overdispersion parameter fixed at 1.
6 As a consequence, omitting ei +m j from the specification in (2) or simply replacing it by a log-additive
function of GDP and/or GDP per capita of countries i and j , as had been done for decades in a-theoretical
empirical gravity models, will generally lead to inconsistent estimates of β, the semi-elasticity of trade with
respect to di j .
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Suppose an economy i is endowed with a production volume of Hi which it sells
at a mill price of Pi , earning it an aggregate income (GDP) of Yi = Pi Hi . In general,
sales to market j are impeded by some trade costs, for which we use the notation Ti j as
in the introduction. Then, in an endowment economy with Armington differentiation
(between the goods fromdifferent countries) at an elasticity of 1−α, nominal aggregate
bilateral trade flows in a world akin to the one in Anderson and van Wincoop (2003)
are determined as7

E(Xi j ) = Pα
i Ti j Y j∑C

k=1 P
α
k Tk j

, (7)

where, at given Hi and Ti j , Pi is implicitly determined from the resource constraint
as generically introduced in (5) and (6), which in the present context becomes

Yi = Pi Hi =
C∑
j=1

Pα
i Ti j Pj Hj∑C
k=1 P

α
k Tk j

, (8)

⇒ P1−α
i = 1

Hi

C∑
j=1

Ti j Pj Hj∑C
k=1 P

α
k Tk j

. (9)

This is exactly the data-generating process which we will use for the endogenous
variables in the model, {E(Xi j ), Pi ,Yi }, before adding a stochastic term to (7). In

terms of the gravity Eq. (1), ln Ti j = d ′
i jβ, ln Pα

i = ei and ln
Pj Hj∑C

k=1 P
α
k Tk j

= m j .8

Assuming that data on GDP of each country i (Yi ) are available, a structural estima-
tor for β, ei ,m j (i = 1, . . . ,C , j = 1, . . . ,C) can be defined as the solution obtained
by iterating between the following Step 1 and Step 2 until convergence:

Step 0 Initial values:
Set initial values for ei , m j (i = 1, . . . ,C , j = 1, . . . ,C).
Call vectors of these values

{
ê(n), m̂(n)

}
.

Step 1 Update β̂:
Given current values

{
ê(n), m̂(n)

}
, generate the auxiliary variable

êm(n)
i j = ê(n)

i + m̂(n)
j .

Estimate β by GLM regression of Xi j on di j and êm(n)
i j , under the constraint

that the coefficient corresponding to êm(n)
i j is set to 1.

The resulting estimator of β is called β̂(n).

7 In the interest of brevity, we skip the exporter-specific preference parameter introduced in Anderson and
van Wincoop (2003) without loss of generality.
8 For DGPs of the type (5)–(9), fixed effects estimates of m j and ei could be used to obtain estimates of

P1−α and Yi (see Fally 2014, Lemma 1A).
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Step 2 Update
{
ê, m̂

}
:

Given current estimates β̂(n), {ê(n), m̂(n)}, GDP {Yi }Ci=1, and α, obtain T (n)
i j =

exp
{
d ′
i j β̂

(n)(1 − α)
}
, ê(n+1)

i = ln E (n+1)
i and m̂(n+1)

j = lnM (n+1)
j , where

E (n+1)
i = Yi

∑
j

T (n)
i j Y j∑

k E(n)
k T (n)

k j

and M (n+1)
j = Y j∑

i E
(n)
i T (n)

i j

.

After Step 2, (n + 1) is redefined as (n) and Step 1 is repeated. Convergence criteria
can be defined by norms on the vector of differences

(
β̂(n+1)′ − β̂(n)′ , ê(n+1)′ − ê(n)′ ,

m̂(n+1)′ − m̂(n)′). As in the fixed effects approach, different iterative-structural esti-
mators are defined by the choice of the respective family of distributions for the GLM
regression in Step 1.9 Except for unrealistic trade cost configurations, trade models
of the form analyzed here have a unique solution, which can be represented by a
contraction mapping (see, e.g., Allen et al 2014).

2.3 Quasi-differences estimation

The approaches in the previous sections estimate the gravity model by either viewing
the fixed effects as additional parameters to be jointly estimated with β or by obtaining
them from the solution to an economic system of resource constraints. An advantage
of these approaches is that the estimated fixed effects can be used to calculate general
equilibrium comparative statics (see, e.g., Fally 2014, who uses a Poisson estimation
with fixed effects to recover parameters of an Anderson and van Wincoop 2003,
model). Compared to the structural estimation, the approach of estimating the fixed
effects allows to account for additional unobserved importer- and exporter-specific
trade costs not part of the structural importer- and exporter-specific terms (see, e.g.,
Egger et al 2012, for an example of such an empirical approach).

An alternative approach is to transform the model to obtain a moment condition
that does not depend on the fixed effects at all. This has the advantage that the number
of parameters to be estimated is reduced substantially which can lead to consider-
able efficiency gains in the estimation of β. Since βk (the kth element of β) has the
interpretation of the ceteris paribus or partial equilibrium semi-elasticity of exports
with respect to the bilateral trade cost di j,k , the vector β is often a first-order object of
interest in gravity estimation.

In linear models, differencing observations with respect to i and j yields a fixed-
effects-free expression (see for instance Baltagi 2013, or Cameron and Trivedi 2005).
In nonlinear models with an exponential mean and one-way fixed effects, a quasi-
differencing analog exists: fixed effects can be eliminated by using i-specific ratios
of observations. Charbonneau (2012) introduced a quasi-differencing approach for
exponential mean models with two-way fixed effects, deriving a moment condition
from (1) which does not depend on either ei or m j .

9 Structural estimators based on log-linearization, such as structurally iterated least squares (Head and
Mayer 2014) suffer from the same problems as OLS: for instance, in general they are inconsistent if the
errors are heteroskedastic. In contrast to the algorithm presented here, structurally iterated least squares
also requires data on a country’s trade and trade costs with itself.
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In the context of the gravity model (1), this moment condition requires sets s of 4
country-pairs involving two exporters (i, l) and two importers (k, j). The two products
of exports,

Xik Xl j = exp
[
(ei + el) + (mk + m j ) + (dik + dl j )

′β
] + (εik + εl j ), (10)

Xlk Xi j = exp
[
(ei + el) + (mk + m j ) + (dlk + di j )

′β
] + (εlk + εi j ), (11)

have the same sums of exporter- and importer-specific terms. Dividing by the bilateral-
specific part and taking conditional expectations yields

E
{
Xik Xl j exp

[−(dik + dl j )
′β
] |·} = exp

[
(ei + el) + (mk + mj )

]
, (12)

E
{
Xlk Xi j exp

[−(dlk + di j )
′β
] |·} = exp

[
(ei + el) + (mk + mj )

]
, (13)

where the conditioning variables have been suppressed to avoid cluttered notation.10

Since the expectations of these terms are the same, a method of moments estimator can
be based, for instance, on the difference (12) minus (13). Specifically, Charbonneau
(2012) proposes to use the just-identified set of unconditional moment conditions

E
{[
Xik Xl j − Xlk Xi j exp(dik + dl j − dlk − di j )

′β
]
(dik + dl j − dlk − di j )

} = 0
(14)

as a basis for GMM estimation.
This approach is related to ratio-of-ratios estimators of trade (cf. Head and Mayer

2014, pp. 152–153 and references therein). To see this, define Xs ≡ Xik Xl j/Xlk Xi j

and ds = (dik + dl j ) − (dlk + di j ) to obtain

E(Xs |ds) = exp(d ′
sβ). (15)

The quasi-differenced model (15) lends itself to estimation by any of the GLM esti-
mators discussed before.11 In comparison with (15), estimation based on (14) has
the advantages that it is applicable even in case the data contain observations where
bilateral export flows are zero, and, more generally, that it does not rely on ratios.

Even if the country-pair-specific errors εi j are independent, the corresponding errors
εs = Xs − E(Xs |ds) will exhibit a mechanical dependence structure as a result of
overlaps in exporter and importer countries in two observations s and s′. Therefore, an
appropriate cluster-robust variance estimator should be adoptedwhen using estimators
based on (14) or (15).

The number of possible sets of countries s is very large, somuch that for the number
of countries typically used in applications, it might cause computational difficulties.
Sacrificing efficiency, one might only select a subset of all possible sets s. We only use
sets for which l = i+1 and j < k ≤ i+C−2. This still increases the observations by
an order of magnitude. To get a perspective of the number of sets, for 10 countries (90

10 The conditioning variables are dik , dli , ei , el ,mk ,m j in the first equation, and the corresponding vari-
ables in the second.
11 As with the standard gravity equation, the previous literature proceeded by log-linearization and OLS
estimation, which is subject to the same problems as discussed in Sect. 1.
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country-pairs) this results in 245 sets; for 50 countries (2,450 country-pairs) it results
in 55,225 sets.

3 Monte Carlo experiments

If the data are generated from the gravity Eq. (1) and according to an underlying
economic model satisfying Eqs. (5), (6), (7), and (9), all estimators discussed in Sect.
2 are consistent. To explore the performance of the estimators in finite samples, we
set up a Monte Carlo experiment. The questions that we seek to explore are how the
relative performance of the estimators is affected by features of the economicmodel, by
the distribution of the stochastic errors, and by an increase in the number of countries.

3.1 Data-generating process

The data-generating process (DGP) consists of a structural part, inwhich the bilateral-,
exporter-, and importer-specific determinants of exports are drawn; and a stochastic
part, in which random errors are drawn and joined to the structural part of exports. In
terms of the gravity equation, the structural part is the conditional expectation function
given in (1) (denoted by μi j ), and the stochastic part is εi j .

3.1.1 Structural economic model

The structural part of the DGP follows the economic model (5)–(9). Given

(1) a value of the substitution elasticity α,
(2) endowments Hi for every country (i = 1, . . . ,C), and
(3) bilateral trade cost factors Ti j for every country-pair i j ,

the model implicitly determines GDP Yi , prices Pi , and structural exports E(Xi j ) =
μi j through general equilibrium constraints. Thus, these variables are determined by
α and the joint distribution of Hi and Ti j .

Broadly in linewithAnderson and vanWincoop (2003) and a host of other estimates
in the literature, the parameter α is set at the value −4 as a baseline. The sensitivity
of the gravity estimators to this parameter is explored by varying α to −9 in an
alternative scenario. Ceteris paribus, a higher elasticity of substitution between goods
(higher absolute value of α) leads to a higher variability of exports, while endowments
remain constant.

The parameters Hi and Ti j are drawn in a way which is consistent with economic
theory. In particular, we set intra-national trade frictions to zero (see Eaton andKortum
2002; or Anderson and van Wincoop 2003), whereby Tii = 1 for all i . For j �= i ,
Ti j ∈ (0, 1]. First, two auxiliary bivariate normal variables are drawn:12

12 The first and second moments of these variables are broadly in line with the data used in the application
in Sect. 4 below.
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zHi j , z
T
i j ∼ N (μz, �z), μz = (3,−2)′,

σz = vHT

(
(3

√
C/4)2 0.95 × 15

√
C/4

0.95 × 15
√
C/4 25

)
.

Then, the parameters of interest are obtained as

Hi = exp

⎛
⎝∑

j

zHi j /C

⎞
⎠C > 0 and Ti j =

(
exp(zTi j )

1 + exp(zTi j )

)−α/4

∈ (0, 1).

The number of countries C is incorporated in Hi (and zH ) such that the share of a
country’s endowment in world endowment remains constant as C increases. With a
baseline of 10 countries, the correlation between Hi and Tij is about 25% and weakens
to 12% as C increases to 50. Endowments Hi have a mean of about 200.

The parameter vHT is a scaling constant for the variance of Hi and Ti j which is
set equal to 0.1 at baseline. This produces a variance of about 2,200. In an alternative
scenario, we increase the cross-country inequality in endowments by setting vHT =
0.3 which increases the variance to about 7,800. Similar to the increase in |α| as
discussed above,more inequality in endowments (highervHT ) leads tomore variability
in exports as well. However, it also leads to higher average exports. The resulting
coefficient of variation of exports is even slightly lower (1.37) than in the baseline
(1.5), whereas the increase in |α| is associated with a significantly higher coefficient
of variation (2.0). Thus, the challenge of the experiment of increasing |α| lies in the
increased dispersion of exports, whereas the challenge of increasing vHT lies in the
greater variance of the fixed effects.

Finally, we parameterize Tij by a single observable trade cost parameter dij for each
ij as

ln Tij = β0 + β1dij, (16)

with β0 = 0 and β1 = 1.

3.1.2 Stochastic shocks

Observed exports are obtained by joining stochastic shocks with the mean of exports,
μi j , as determined by the structural model: Xi j = μi jηi j . Provided the errors ηi j
are mean-independent, E(ηi j ) = 1, all considered estimators are consistent. Their
asymptotic efficiencydepends on the variance ofηi j .We consider six different variance
functions for ηi j . Five of these imply asymptotic efficiency of the Poisson, Gamma,
Negative Binomial, Gaussian, and Inverse Gaussian estimators, respectively. The sixth
variance function of ηi j is not optimal for any of these five estimators.

The errors ηi j are drawn from a heteroskedastic log-normal distribution

ηi j = exp zηi j , zηi j ∼ N (−0.5σ 2
η , σ 2

η ).
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Table 2 Variance functions in Monte Carlo simulations

Number σ 2
η V(ηi j ) V(Xi j ) Optimal estimator

1 ln(2) 1 μ2
i j Gamma

2 ln(1 + μ−1
i j ) μ−1

i j μi j Poisson

3 ln(2 + μ−1
i j ) 1 + μ−1

i j μi j + μ2
i j NegBin

4 ln(1 + μ−2
i j ) μ−2

i j μ−2
i j Gaussian

5 ln(1 + μi j ) μi j μ3
i j Inv. Gaussian

6 ln(1 + μ−1.5
i j ) μ−1.5

i j
√

μi j Other

Hence, E(ηi j ) = 1 and V(ηi j ) = exp(σ 2
η ) − 1. Since V(Xi j |di j , ei ,m j ) = μ2

i jσ
2
η ,

we determine σ 2
η as detailed in Table 2. The term “Optimal estimator” in the table

refers to asymptotic efficiency. This does not exclude the possibility of poor small-
sample performance.While the sixth (dubbed “Other”) variance function, we consider
does not correspond to anyone of the discussed estimators, we note that among the
estimators of Table 2 it is ‘closest’ to the one of Poisson for large values of μi j .

In every case, we rescale the errors ηi j to achieve a constant pseudo-R2 =
V(μi j )/[V(μi j ) + V(εi j )] of about 50% for all scenarios and variance functions.
The errors εi j in this pseudo R2 are the implicit additive errors Xi j − μi j .

3.1.3 Specifications and estimators

For estimation, we consider four alternative specifications:

S1: Xi j = exp(β10 + β11di j + ei + m j ) + ε1i j , (17)

S2: Xi j = exp(β20 + β21di j +
C∑

k=2

e2k Dki +
C∑

k=2

m2k Dkj ) + ε2i j , (18)

S3: Xi j = exp(β30 + β31di j + β32yi + β33y j ) + ε3i j , (19)

S4: Xi j = exp(β40 + β41di j ) + ε4i j . (20)

All specifications include a constant which is denoted by {β10, β20, β30, β40}. The
object of interest is β1 from (16) which here is estimated by the coefficients on di j ,
{β11, β21, β31, β41}. S1 is a structural model which includes the true terms of ei and
m j with constrained unitary parameters on them, in line with economic theory. The
true unknown parameter β11 is unity but allowed to be estimated differently from that.
S2 is a two-way fixed effects model which estimates e2i and m2 j by country-specific
constants through exporter and importer indicator variables Dki = 1(i = k) and
Dkj = 1( j = k), and the true parameter β21 is unity. Hence, S2 estimates ei + m j

by 2(C − 1) constants rather than by structural constraints as in S1 which is less
efficient than S1. S3 is an old-fashioned gravity model—akin to the ones that had
been estimated prior to Eaton and Kortum (2002) and Anderson and van Wincoop
(2003)—which replaces {ei ,m j } by log exporter and importer GDP, {yi , y j }, and
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estimates parameters {β32, β33} on them—about which we do not have priors. Clearly,
this model is misspecified, as {yi , ti j , y j } are correlated with ε3i j . However, given its
vast application in the past, it is interesting to see how this model fares in a laboratory
experiment relative to S1 and S2. Finally, S4 is an ad hoc gravity model which only
includes ti j apart from a constant. For the same reason as S3, thismodel ismisspecified,
as ti j is correlated with ε4i j . Notice that while both S3 and S4 are misspecified, the
problem that E[ei di j ] �= 0 and E[m jdi j ] �= 0 vanishes as the number of countries
C grows. Since the number of countries is large empirically, the bias of β due to
omitting ei +m j should be small in theory (even though countries vary a lot in terms
of their size).13 This issue is commonly disregarded. Finally, we also estimate two
quasi-differences models, based on Eqs. (14) and (15).

For every specificationS1–S4,weuse thefiveGLMestimators basedon theGamma,
Poisson, NegBin, Gaussian, and Inverse Gaussian LEF family. In our baseline scenario
α = −4, vHT = 0.1, andC = 10. Sincewe disregard intra-national trade in estimation
(as is commonly the case in applied work), C = 10 results in 90 observations. We
consider three alternative scenarios: a higher value of |α| with α = −9, a higher
value of vHT with vHT = 0.3, and a larger number of countries with C = 50 (2,450
observations). In each alternative scenario, we leave the two remaining parameters
of {α, vHT ,C} at baseline values. Results of a fourth alternative with α = −2 are
displayed in Table 10 in the Appendix.

3.2 Simulation results

All statistics presented throughout this subsection are based on 1,000 replications of
the DGP.

3.2.1 Baseline scenario α = −4, vHT = 0.1, C = 10

Table 3 presents our main results corresponding to iterative-structural (IS) (dubbed S1
above), fixed effects (FE), and quasi-differences (QD) estimation (FE and QD were
dubbed S2 above). Estimators are grouped in columns. Six panels present statistics for
the estimated β1 under the six different variance functions of the errors in the DGP:
the number of convergences achieved out of 1,000 runs (CR), the mean of β̂1 over
converged estimations (Mean), the standard deviation (SD), median (Med), and the
5th and 95th percentile of the distribution of estimates.

A glance at the results for the IS estimators reveals that despite the small sample
size of only 90 country-pairs, exploiting all available economic structure of the DGP
results in extremely precise estimates. All estimators are virtually unbiased (mean
equal to 1) and display standard deviations which more often than not are smaller
than the two decimal places we report in the table. The excellent performance of the

13 To see this, note that as the number of countries grows to infinity countries’ consumer and producer
prices will be entirely determined by the rest of the world. Hence, for any arbitrary pair of countries, the
impact of bilateral trade costs on price indices, producer prices, or factor costs will be infinitesimally small.
The correlation between bilateral trade costs and any multilateral variable (such as gross domestic product,
wages, or prices) approaches zero as the number of countries grows large.
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Table 3 Baseline Monte Carlo results, 1,000 replications

Iterative-structural estimators Fixed effects estimators QD

Gam P NB Gau IG Gam P NB Gau IG GMM P

Variance function 1 (Gamma)

CR 1,000 1,000 1,000 909 988 1,000 1,000 1,000 992 999 1,000 1,000

Mean 1.00 1.00 1.00 1.01 1.00 1.00 1.00 0.99 1.55 1.26 0.99 0.93

SD 0.00 0.01 0.01 0.03 0.02 0.07 0.12 0.08 1.03 0.23 0.11 0.22

Med 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 1.31 1.21 0.99 0.89

5th 1.00 1.00 1.00 1.00 1.00 0.88 0.82 0.85 0.85 0.99 0.81 0.66

95th 1.00 1.00 1.00 1.08 1.00 1.11 1.21 1.13 2.98 1.67 1.18 1.33

Variance function 2 (Poisson)

CR 1,000 1,000 1,000 998 818 1,000 1,000 1,000 1,000 969 1,000 1,000

Mean 1.00 1.00 1.00 1.00 1.00 1.03 1.00 1.00 1.00 1.46 1.00 1.19

SD 0.00 0.00 0.00 0.01 0.02 0.05 0.01 0.01 0.01 0.40 0.05 0.36

Med 1.00 1.00 1.00 1.00 1.00 1.03 1.00 1.00 1.00 1.36 1.01 1.11

5th 1.00 1.00 1.00 1.00 1.00 0.95 0.98 0.96 0.98 1.04 0.93 0.84

95th 1.00 1.00 1.00 1.02 1.01 1.12 1.02 1.03 1.02 2.24 1.05 1.78

Variance function 3 (Negative Binomial)

CR 1,000 1,000 1,000 911 816 1,000 1,000 1,000 993 920 1,000 1,000

Mean 1.00 1.00 1.00 1.02 1.00 1.05 1.00 0.99 1.63 1.88 1.00 1.09

SD 0.00 0.01 0.01 0.04 0.02 0.10 0.12 0.09 1.87 0.56 0.14 0.43

Med 1.00 1.00 1.00 1.00 1.00 1.06 0.99 0.99 1.30 1.74 1.01 1.00

5th 1.00 1.00 1.00 1.00 1.00 0.89 0.82 0.84 0.87 1.21 0.78 0.66

95th 1.00 1.00 1.00 1.09 1.00 1.23 1.23 1.12 3.01 3.01 1.23 1.82

Variance function 4 (Gaussian)

CR 1,000 1,000 1,000 1,000 594 1,000 1,000 1,000 1,000 799 1,000 1,000

Mean 1.00 1.00 1.00 1.00 1.00 1.06 1.00 1.00 1.00 1.86 1.00 1.36

SD 0.00 0.00 0.00 0.00 0.03 0.06 0.01 0.02 0.00 0.72 0.04 0.88

Med 1.00 1.00 1.00 1.00 1.00 1.06 1.00 1.01 1.00 1.68 1.01 1.18

5th 1.00 1.00 1.00 1.00 1.00 0.95 0.98 0.97 1.00 1.02 0.95 0.76

95th 1.00 1.00 1.01 1.00 1.01 1.16 1.01 1.03 1.00 3.25 1.05 2.39

Variance function 5 (Inverse Gaussian)

CR 996 999 999 982 996 996 1,000 1,000 993 996 1,000 1,000

Mean 1.00 1.00 1.00 1.00 1.00 0.98 0.97 0.97 1.09 0.99 0.98 0.97

SD 0.00 0.00 0.00 0.01 0.00 0.02 0.08 0.04 0.50 0.02 0.07 0.07

Med 1.00 1.00 1.00 1.00 1.00 0.98 0.97 0.97 0.98 0.99 0.98 0.97

5th 1.00 1.00 1.00 1.00 1.00 0.95 0.90 0.93 0.90 0.96 0.92 0.90

95th 1.00 1.00 1.00 1.02 1.00 1.01 1.04 1.02 1.66 1.02 1.03 1.03

Variance function 6 (Other)

CR 1,000 1,000 1,000 1,000 691 1,000 1,000 1,000 1,000 910 1,000 1,000

Mean 1.00 1.00 1.00 1.00 1.00 1.05 1.00 1.00 1.00 1.65 1.00 1.25
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Table 3 continued

Iterative-structural estimators Fixed effects estimators QD

Gam P NB Gau IG Gam P NB Gau IG GMM P

SD 0.01 0.00 0.00 0.00 0.02 0.06 0.01 0.02 0.00 0.57 0.04 0.63

Med 1.00 1.00 1.00 1.00 1.00 1.04 1.00 1.00 1.00 1.51 1.01 1.12

5th 1.00 1.00 1.00 1.00 1.00 0.95 0.98 0.97 1.00 1.01 0.94 0.78

95th 1.00 1.00 1.00 1.00 1.00 1.14 1.02 1.03 1.01 2.75 1.05 1.97

The table shows descriptive statistics for the distribution of estimates of β1 = 1 in Eq. (16) for 1,000
replications of the DGP of Sect. 3.1 for each of six different variance functions of Table 2. The statistics
are as follows: number of converged replications (CR), as well as mean, standard deviation (SD), median
(Med), 5th and 95th percentiles, all of these computed over converged replications. Gam, P, NB, Gau, and
IG stand for Gamma, Poisson Negative Binomial, Gaussian and Inverse Gaussian-GLM estimators. QD
stands for Quasi-differences estimators, and GMM and P correspond to Eqs. (14) estimated by two-step
GMM and (15) estimated by Poisson-GLM. Where statistics were larger than 10 they have been replaced
by the symbol †

IS estimators in this case stems from the fact that they specify the model absolutely
correctly and that the DGP with a single well-behaved explanatory variable di j is very
simple. In this case, the IS estimatorsmay serve as a benchmark againstwhich the other
estimators can be measured. The only exception to the outstanding performance of
the IS estimators lies in the inverse Gaussian (IS-IG) estimator’s serious convergence
difficulties. With a convergence failure rate as high as 40%, this issue points to major
numerical difficulties of this estimator in handling the optimization process reliably
for DGPs other than its optimal variance function.

In the group of FE estimators, the performances of Poisson (FE-P) and Negative
Binomial (FE-NB) come closest to the one of the IS estimators. They display no bias
and present small standard deviations for FE estimators, lagging only behind the esti-
mator that specifies the variance process correctly.14 While the Gamma FE estimator
(FE-Gam), too, has similar dispersion, it is slightly biased upward in most DGPs. In
contrast, the Gaussian -i.e., nonlinear least squares- (FE-Gau) and inverse Gaussian
estimators (FE-IG) display more serious problems. FE-Gau’s mean is seriously biased
upward under the Gamma and Negative Binomial variance function DGPs. The prob-
lem is not just one of a few outliers, as can be seen from FE-Gau’s median which does
not seem much better-behaved. FE-IG’s performance is dismal. Its mean is substan-
tially distorted and so is its median. Only if the variance function of exports is cubic
(i.e., with Variance function 5 in the table) does FE-IG produce good results (indeed,

14 TheNB-GLMestimators have their overdispersion parameter fixed at 1. Theoretically, one could improve
on this by estimating an optimal overdispersion parameter in a two-step NB Quasi-Generalized Pseudo-
Maximum Likelihood procedure, as proposed by Bosquet and Boulhol (2014). Table 12 in the Appendix
displays results for this estimator. We found no or negligible efficiency gains in our DGPs from doing
so. Moreover, the estimator had severe difficulties in many of our DGPs. The reason is that NB QGPML
estimates the coefficients a and b in the variance function aμi j + bμ2

i j – which are zero in some of our
DGPs – to build an overdispersion parameter b/a. Note that naïvely estimating the overdispersion jointly
with β in a quasi-Likelihood approach falls outside of GLM estimation and its property of consistency.
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Table 4 Baseline scenario: inconsistent approaches, 1,000 replications

Est. with GDP as proxy for FE Est. without add. regressors

Gam P NB Gau IG Gam P NB Gau IG

Variance function 1 (Gamma)

CR 1,000 1,000 1,000 998 989 1,000 1,000 1,000 1,000 1,000

Mean 0.92 0.84 0.87 0.98 1.15 0.89 0.81 0.85 0.88 1.09

SD 0.08 0.12 0.10 1.10 0.33 0.09 0.12 0.10 2.30 0.42

Med 0.93 0.83 0.87 0.79 1.08 0.90 0.80 0.85 0.74 1.02

5th 0.78 0.65 0.72 0.54 0.83 0.74 0.62 0.69 0.51 0.76

95th 1.05 1.04 1.02 1.58 1.66 1.03 1.03 1.01 1.23 1.60

Variance function 2 (Poisson)

CR 1,000 1,000 1,000 1,000 872 1,000 1,000 1,000 1,000 991

Mean 0.93 0.84 0.88 0.79 1.83 0.90 0.81 0.85 0.77 2.08

SD 0.07 0.06 0.05 0.07 1.54 0.07 0.07 0.06 0.09 2.65

Med 0.94 0.85 0.89 0.79 1.28 0.91 0.82 0.86 0.77 1.11

5th 0.82 0.74 0.78 0.66 0.84 0.78 0.70 0.75 0.62 0.75

95th 1.03 0.93 0.95 0.90 4.43 1.01 0.91 0.94 0.90 6.93

Variance function 3 (Negative Binomial)

CR 1,000 1,000 1,000 996 817 1,000 1,000 1,000 1,000 977

Mean 0.94 0.84 0.88 1.01 2.10 0.91 0.82 0.85 0.85 1.99

SD 0.11 0.12 0.10 1.53 1.90 0.12 0.12 0.11 0.92 2.23

Med 0.94 0.84 0.87 0.80 1.48 0.91 0.81 0.85 0.75 1.16
5th 0.76 0.65 0.72 0.55 0.77 0.70 0.62 0.68 0.52 0.67

95th 1.12 1.07 1.06 1.54 5.24 1.09 1.04 1.04 1.22 6.96

Variance function 4 (Gaussian)

CR 1,000 1,000 1,000 1,000 630 1,000 1,000 1,000 1,000 885

Mean 0.95 0.84 0.88 0.79 2.79 0.91 0.82 0.85 0.77 3.35

SD 0.08 0.06 0.05 0.07 2.91 0.08 0.07 0.06 0.09 4.59

Med 0.95 0.85 0.89 0.79 1.46 0.92 0.82 0.86 0.77 1.21

5th 0.80 0.74 0.78 0.66 0.80 0.76 0.70 0.75 0.62 0.74

95th 1.06 0.93 0.95 0.91 8.58 1.04 0.92 0.94 0.90 12.56

Variance function 5 (Inverse Gaussian)

CR 996 1,000 1,000 988 996 997 1,000 1,000 999 996

Mean 0.90 0.82 0.86 † 1.02 0.88 0.80 0.83 † 1.00

SD 0.07 0.13 0.09 † 0.09 0.09 0.15 0.10 † 0.15

Med 0.91 0.82 0.86 0.77 1.01 0.88 0.79 0.84 0.74 0.98

5th 0.81 0.70 0.75 0.61 0.88 0.76 0.66 0.71 0.57 0.83

95th 0.98 0.92 0.95 0.92 1.18 0.97 0.91 0.93 0.91 1.21

Variance function 6 (Other)

CR 1,000 1,000 1,000 1,000 781 1,000 1,000 1,000 1,000 944

Mean 0.94 0.84 0.88 0.79 2.36 0.91 0.82 0.85 0.77 2.71
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Table 4 continued

Est. with GDP as proxy for FE Est. without add. regressors

Gam P NB Gau IG Gam P NB Gau IG

SD 0.07 0.06 0.05 0.07 2.29 0.08 0.07 0.06 0.09 3.99

Med 0.94 0.85 0.89 0.79 1.39 0.91 0.82 0.86 0.77 1.14

5th 0.81 0.74 0.78 0.66 0.81 0.77 0.70 0.75 0.62 0.73

95th 1.05 0.92 0.95 0.90 6.11 1.02 0.91 0.94 0.90 8.81

See Table 3

in this case FE-IG provides the best performance among FE estimators, as one would
expect).

The last two columns of Table 3 give descriptive statistics of two quasi-differences
(QD) estimators’ small-sample distribution in these DGPs. Using 245 observations
of country-tetrads, a two-step GMM estimator (QD-GMM) and a simple Poisson
estimator (QD-P) are used. The performance of QD-GMM is clearly superior to QD-
P. Itsmean andmedian are both centered at the true value of unity. Its standard deviation
tends to be larger than that of the better FE estimators, though. On the other hand,
QD-P is visibly biased in some DGPs.

As the results from the alternative scenarios will show, these results are quite robust
and to a large degree they remain unchanged throughout the alterations that the DGP
is subjected to.

Finally, results of the baseline DGP for these IS, FE, andQD estimators can be com-
pared to the traditional approaches, which ignore general equilibrium effects through
the inclusion of ei andm j as fixed effects or structural nonlinear terms. The results are
displayed in Table 4. The first five columns contain results for GLM estimators using
log-GDP (yi and y j ) as proxies for ei andmi (dubbed S3 above); the last five columns
contain results from GLM regressions of Xi j on di j without any additional regressors
(dubbed S4 above). Table 4 illustrates that large biases can arise from the omission
and incorrect treatment of fixed effects. We will not consider these estimators any
further in detail. It will suffice to say that the biases in the alternative scenarios with
increased α or vHT are substantially larger than those in this baseline. On the other
hand, the biases decrease with a larger sample size; a consequence of the fact that
in our structural model the correlation between endowments and bilateral trade costs
decreases in a growing world (i.e., with more trade partners becoming available).

3.2.2 Higher elasticity of substitution α = −9, and higher variance of endowments,
vHT = 0.3

Results for the DGP with α = 9 are displayed in Table 5. As discussed above, this
experiment increases the variability of trade flows by making countries reacting more
strongly to price differences of traded goods, all the while the world endowment is
held constant. In general, this is a more challenging DGP for the estimators. The IS
estimators maintain their good performance, but convergence failures becomes more
prevalent.
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Table 5 Alternative 1 (α = −9), 1,000 replications

Iterative-structural estimators Fixed effects estimators QD

Gam P NB Gau IG Gam P NB Gau IG GMM P

Variance function 1 (Gamma)

CR 1,000 971 999 757 799 1,000 1,000 1,000 965 876 1,000 1,000

Mean 1.00 1.01 1.00 1.02 1.01 1.00 1.00 0.99 1.60 1.24 0.99 0.96

SD 0.00 0.02 0.01 0.04 0.03 0.03 0.11 0.07 0.93 0.32 0.06 0.46

Med 1.00 1.01 1.00 1.00 1.00 1.00 0.99 0.98 1.32 1.17 0.99 0.86

5th 1.00 0.99 1.00 0.97 1.00 0.95 0.84 0.88 0.89 0.99 0.89 0.59

95th 1.00 1.03 1.01 1.08 1.01 1.05 1.20 1.10 3.13 1.77 1.10 1.57

Variance function 2 (Poisson)

CR 990 999 1,000 957 33 937 1,000 1,000 1,000 17 1,000 1,000

Mean 1.00 1.00 1.00 1.01 1.00 1.34 1.00 1.00 1.00 † 1.03 4.02

SD 0.01 0.01 0.00 0.02 0.01 0.12 0.02 0.03 0.01 † 0.10 22.00

Med 1.00 1.00 1.00 1.00 1.00 1.33 1.00 1.01 1.00 † 1.03 0.92

5th 1.00 1.00 1.00 1.00 1.00 1.15 0.97 0.95 0.99 2.20 0.87 0.33

95th 1.00 1.02 1.01 1.05 1.03 1.54 1.03 1.05 1.02 † 1.17 10.34

Variance function 3 (Negative Binomial)

CR 974 978 999 721 34 914 1,000 1,000 960 14 1,000 1,000

Mean 1.00 1.01 1.00 1.02 1.01 1.36 1.01 1.00 1.66 † 1.06 3.60

SD 0.01 0.02 0.01 0.04 0.04 0.13 0.11 0.08 2.11 † 0.15 18.16

Med 1.00 1.01 1.00 1.01 1.00 1.36 1.00 1.00 1.32 † 1.07 0.88

5th 1.00 0.99 1.00 0.97 1.00 1.16 0.84 0.87 0.89 0.20 0.81 0.34

95th 1.00 1.03 1.01 1.08 1.12 1.57 1.22 1.13 3.03 † 1.29 11.07

Variance function 4 (Gaussian)

CR 883 998 1,000 1,000 0 602 1,000 1,000 1,000 44 1,000 1,000

Mean 1.00 1.01 1.00 1.00 – 1.62 1.01 1.02 1.00 † 1.04 3.59

SD 0.01 0.01 0.00 0.00 – 0.17 0.03 0.04 0.00 † 0.12 26.88

Med 1.00 1.00 1.00 1.00 – 1.61 1.01 1.02 1.00 † 1.04 0.69

5th 1.00 1.00 1.00 1.00 – 1.35 0.97 0.96 1.00 † 0.83 0.24

95th 1.00 1.02 1.01 1.00 – 1.91 1.03 1.05 1.00 † 1.23 6.80

Variance function 5 (Inverse Gaussian)

CR 998 988 998 912 996 998 1,000 1,000 992 942 1,000 1,000

Mean 1.00 1.00 1.00 1.01 1.00 0.99 0.98 0.98 1.03 1.00 0.98 0.99

SD 0.00 0.01 0.01 0.03 0.00 0.01 0.04 0.02 0.27 0.01 0.02 0.14

Med 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.98 0.99 1.00 0.99 0.99

5th 0.99 0.99 1.00 0.99 1.00 0.98 0.94 0.95 0.91 0.99 0.97 0.92

95th 1.00 1.02 1.01 1.06 1.00 1.00 1.01 1.00 1.23 1.01 1.00 1.04

Variance function 6 (Other)

CR 950 999 1,000 1,000 7 780 1,000 1,000 1,000 47 1,000 1,000

Mean 1.00 1.00 1.00 1.00 1.08 1.50 1.00 1.01 1.00 † 1.04 2.85
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Table 5 continued

Iterative-structural estimators Fixed effects estimators QD

Gam P NB Gau IG Gam P NB Gau IG GMM P

SD 0.01 0.01 0.00 0.00 0.24 0.15 0.02 0.03 0.00 † 0.10 16.98

Med 1.00 1.00 1.00 1.00 1.00 1.49 1.01 1.02 1.00 † 1.04 0.72

5th 1.00 1.00 1.00 1.00 0.93 1.26 0.98 0.96 1.00 † 0.86 0.29

95th 1.00 1.02 1.01 1.00 1.62 1.77 1.03 1.05 1.00 † 1.22 9.55

See Table 3

The IG estimator, both in its IS and its FE variant, cannot be used. Its convergence
rates are close to 0%, and even the instances recorded as converged are likely to be
convergence failures as the estimates were extremely large numbers. We have marked
such cases where the statistic was not credible with the symbol “†”.

Among the FE estimators, the performances broadly echo the baseline. FE-P and
FE-NB continue to show favorable performances, and likewise FE-Gau continues
having difficulties in the Gamma andNegative Binomial DGP. Themost striking result
is the stark deterioration of FE-Gam, which now only shows acceptable properties in
the Gamma and Inverse Gaussian DGPs, while having up to 30% bias in the median
in the other DGPs.

In contrast, QD-GMM is only slightly negatively affected by this DGP relative to
the baseline. Similarly, there is not much difference in QD-P’s medians. Its means,
however, seem quite distorted by outliers.

By increasing vHT = 0.3, the variability of the endowments (and, hence, of the
fixed effects ei and m j ) is increased. The simulation results in Table 6 suggest that
this kind of change can be handled better by the estimators than the increase in the
substitution elasticity; the IS estimators, for instance, have a visibly better convergence
rate. The IS-IG estimator works quite reliably; however, its FE-IG counterpart shows
the same poor performance as before.

3.2.3 Higher number of countries C = 50

Finally, a much larger sample is considered. With C = 50, one obtains 2,450 obser-
vations on country-pairs that can be used in estimation. This change in the DGP can
help in assessing to what extent the problems described above are small-sample dif-
ficulties that can be resolved with more observations. The results in Table 7 indicate
that by and large most of the issues indeed vanish when data on more countries are
available. FE-Gam, FE-P and FE-NB all have little to no bias and standard devia-
tions which are often not far from IS. The average bias of FE-Gau is substantially
smaller, and even more so is its median bias. However, the bias is still visible, and this
suggests that, while vanishing asymptotically, it can be quite persistent. At C = 50,
QD-GMM has essentially zero remaining small-sample bias. Its standard deviation is
also small, although it is most often larger than that of FE-Gam, FE-P, and FE-NB. It
seems unlikely that the two-step QD-GMM will catch up and overtake this group of
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Table 6 Alternative 2 (vHT = 0.3), 1,000 replications

Iterative-structural estimators Fixed effects estimators QD

Gam P NB Gau IG Gam P NB Gau IG GMM P

Variance function 1 (Gamma)

CR 1,000 998 1,000 820 929 1,000 1,000 1,000 985 965 1,000 1,000

Mean 1.00 1.00 1.00 1.02 1.00 1.00 1.00 0.99 1.66 1.26 0.99 0.92

SD 0.00 0.01 0.01 0.05 0.01 0.04 0.11 0.07 1.23 0.29 0.08 0.29

Med 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 1.33 1.20 0.99 0.86

5th 1.00 1.00 1.00 1.00 1.00 0.93 0.84 0.87 0.83 1.00 0.86 0.62

95th 1.00 1.01 1.00 1.09 1.00 1.07 1.20 1.11 3.65 1.67 1.13 1.40

Variance function 2 (Poisson)

CR 1,000 1,000 1,000 976 262 1,000 1,000 1,000 1,000 200 1,000 1,000

Mean 1.00 1.00 1.00 1.01 1.00 1.17 1.00 1.00 1.00 2.67 1.01 1.97

SD 0.00 0.00 0.00 0.02 0.01 0.09 0.02 0.03 0.01 0.82 0.07 3.88

Med 1.00 1.00 1.00 1.00 1.00 1.16 1.00 1.01 1.00 2.53 1.02 1.13

5th 1.00 1.00 1.00 1.00 1.00 1.02 0.97 0.95 0.98 1.74 0.90 0.50

95th 1.00 1.01 1.00 1.05 1.00 1.33 1.03 1.05 1.02 4.24 1.11 5.17

Variance function 3 (Negative Binomial)

CR 1,000 999 1,000 834 313 1,000 1,000 1,000 986 186 1,000 1,000

Mean 1.00 1.00 1.00 1.02 1.00 1.20 1.01 1.00 1.67 2.67 1.04 2.05

SD 0.00 0.01 0.01 0.05 0.03 0.11 0.12 0.08 1.25 0.86 0.14 4.55

Med 1.00 1.00 1.00 1.00 1.00 1.19 1.00 0.99 1.35 2.54 1.05 1.07

5th 1.00 1.00 1.00 1.00 1.00 1.02 0.83 0.86 0.88 1.64 0.82 0.46

95th 1.00 1.01 1.00 1.09 1.01 1.39 1.24 1.14 3.40 4.01 1.26 5.49

Variance function 4 (Gaussian)

CR 1,000 1,000 1,000 1,000 31 998 1,000 1,000 1,000 32 1,000 1,000

Mean 1.00 1.00 1.00 1.00 1.00 1.33 1.00 1.01 1.00 † 1.03 3.57

SD 0.00 0.00 0.00 0.00 0.01 0.14 0.02 0.03 0.00 † 0.07 15.01

Med 1.00 1.00 1.00 1.00 1.00 1.32 1.01 1.02 1.00 † 1.03 1.03

5th 1.00 1.00 1.00 1.00 1.00 1.12 0.97 0.95 1.00 3.16 0.92 0.37

95th 1.00 1.01 1.01 1.00 1.00 1.56 1.03 1.05 1.00 † 1.13 11.11

Variance function 5 (Inverse Gaussian)

CR 997 996 1,000 959 992 997 1,000 1,000 992 994 1,000 1,000

Mean 1.00 1.00 1.00 1.01 1.00 0.99 0.98 0.98 1.05 1.00 0.98 0.98

SD 0.00 0.01 0.00 0.02 0.00 0.01 0.06 0.03 0.41 0.01 0.04 0.07

Med 1.00 1.00 1.00 1.00 1.00 0.98 0.98 0.98 0.98 0.99 0.98 0.98

5th 0.99 1.00 1.00 1.00 1.00 0.98 0.92 0.94 0.90 0.98 0.95 0.92

95th 1.00 1.00 1.00 1.05 1.00 1.00 1.04 1.01 1.46 1.01 1.01 1.04

Variance function 6 (Other)

CR 1,000 1,000 1,000 998 96 1,000 1,000 1,000 1,000 44 1,000 1,000

Mean 1.00 1.00 1.00 1.00 1.01 1.26 1.00 1.01 1.00 † 1.03 2.75
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Table 6 continued

Iterative-structural estimators Fixed effects estimators QD

Gam P NB Gau IG Gam P NB Gau IG GMM P

SD 0.00 0.00 0.00 0.00 0.04 0.12 0.02 0.03 0.00 † 0.07 7.27

Med 1.00 1.00 1.00 1.00 1.00 1.25 1.01 1.01 1.00 2.70 1.03 1.10

5th 1.00 1.00 1.00 1.00 1.00 1.07 0.97 0.95 1.00 1.46 0.92 0.44

95th 1.00 1.01 1.01 1.00 1.01 1.46 1.03 1.05 1.01 † 1.13 9.07

See Table 3

Table 7 Alternative 3 (C = 50), 1,000 replications

Iterative-structural estimators Fixed effects estimators QD

Gam P NB Gau IG Gam P NB Gau IG GMM P

Variance function 1 (Gamma)

CR 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Mean 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.15 1.13 1.00 0.98

SD 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.12 0.04 0.02 0.07

Med 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.13 1.13 1.00 0.97

5th 1.00 1.00 1.00 1.00 1.00 0.98 0.96 0.97 1.01 1.07 0.97 0.89

95th 1.00 1.00 1.00 1.00 1.00 1.02 1.04 1.02 1.36 1.22 1.03 1.12

Variance function 2 (Poisson)

CR 1,000 1,000 1,000 1,000 844 1,000 1,000 1,000 1,000 640 1,000 1,000

Mean 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 3.03 1.00 1.60

SD 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.62 0.01 0.51

Med 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 2.95 1.00 1.49

5th 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 2.17 0.99 1.13

95th 1.00 1.00 1.00 1.00 1.00 1.03 1.00 1.01 1.00 4.08 1.01 2.35

Variance function 3 (Negative Binomial)

CR 1,000 1,000 1,000 1,000 824 1,000 1,000 1,000 1,000 432 1,000 1,000

Mean 1.00 1.00 1.00 1.00 1.00 1.02 1.00 1.00 1.16 3.60 1.00 1.53

SD 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.12 0.66 0.03 0.45

Med 1.00 1.00 1.00 1.00 1.00 1.02 1.00 1.00 1.14 3.52 1.00 1.41

5th 1.00 1.00 1.00 1.00 1.00 0.99 0.96 0.97 1.00 2.76 0.96 1.09

95th 1.00 1.00 1.00 1.00 1.00 1.05 1.04 1.03 1.38 4.78 1.04 2.37

Variance function 4 (Gaussian)

CR 1,000 1,000 1,000 1,000 273 1,000 1,000 1,000 1,000 3 1,000 1,000

Mean 1.00 1.00 1.00 1.00 1.00 1.03 1.00 1.00 1.00 5.99 1.00 2.42

SD 0.00 0.00 0.00 0.00 0.03 0.02 0.00 0.01 0.00 0.49 0.01 3.97

Med 1.00 1.00 1.00 1.00 1.00 1.03 1.00 1.00 1.00 5.94 1.00 1.59

5th 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 5.53 0.99 1.03

95th 1.00 1.00 1.00 1.00 1.00 1.05 1.00 1.01 1.00 6.51 1.01 6.06
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Table 7 continued

Iterative-structural estimators Fixed Effects Estimators QD

Gam P NB Gau IG Gam P NB Gau IG GMM P

Variance function 5 (Inverse Gaussian)

CR 997 1,000 1,000 988 997 997 1,000 1,000 987 997 1,000 1,000

Mean 1.00 1.00 1.00 1.00 1.00 0.98 0.98 0.98 1.48 0.99 0.98 0.98

SD 0.00 0.00 0.00 0.00 0.00 0.01 0.06 0.01 1.50 0.00 0.04 0.04

Med 1.00 1.00 1.00 1.00 1.00 0.98 0.97 0.97 1.00 0.99 0.98 0.98

5th 1.00 1.00 1.00 1.00 1.00 0.97 0.94 0.96 0.93 0.99 0.95 0.95

95th 1.00 1.00 1.00 1.00 1.00 0.99 1.06 1.00 3.32 1.00 1.03 1.02

Variance function 6 (Other)

CR 1,000 1,000 1,000 1,000 572 1,000 1,000 1,000 1,000 60 1,000 1,000

Mean 1.00 1.00 1.00 1.00 1.00 1.02 1.00 1.00 1.00 4.19 1.00 2.19

SD 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.01 0.00 0.82 0.01 6.98

Med 1.00 1.00 1.00 1.00 1.00 1.02 1.00 1.00 1.00 4.26 1.00 1.55

5th 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 3.16 0.99 1.10

95th 1.00 1.00 1.00 1.00 1.00 1.04 1.00 1.01 1.00 5.60 1.01 3.77

See Table 3

FE estimators in terms of efficiency with further increases in sample size. However,
we only used a small fraction of the available sets of country-tetrads s, and further
efficiency gains might be achieved by increasing the number of sets s included in
estimation. The estimator FE-IG cannot be recommended, in general. It is the only
FE estimator exhibiting tremendous biases in both mean and median. QD-P cannot
be recommended either. Worryingly, some of the biases are larger than in the case of
C = 10, which suggests that QD-P and estimators like it might not have moments
even in larger samples (at least not for the DGPs we considered), or that the rate of
convergence is very slow.

3.2.4 t-statistics from fixed effects estimators

We conclude this section by investigating the extent of the incidental parameters
problem for FE estimators. As the previous results illustrated, the problem does not
bias the estimate of β, which was essentially unity on average for all FE estimators
except FE-IG. Rather, the problem manifests itself in the estimation of the asymptotic
variance. Table 8 displays descriptive statistics for the estimated t-statistics corre-
sponding to the (true) null hypothesis H0 : β21 = 1 for the coefficient on di j ; i.e.,
t = (β̂21 − 1)/s.e.(β̂21), where s.e.(β̂21) is the heteroskedasticity-robust asymptotic
standard error for β̂21. Table 8 is divided into two panels. The left panel gives results
for the baseline specification with 10 countries (“C=10”). The mean of the t-statistics
over the 1,000 Monte Carlo replications is almost always quite different from the the-
oretical mean of zero for all five FE estimators. A look at the rows for the medians
reveals that they are close to the means, indicating that it is not a few outliers that are
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Table 8 t-statistics for fixed effects estimators (baseline specification), 1,000 replications

C = 10 C = 50

Gam P NB Gau IG Gam P NB Gau IG

Variance function 1 (Gamma)

CR 1,000 1,000 1,000 992 999 1,000 1,000 1,000 1,000 1,000

Mean 0.02 −0.13 −0.26 1.20 2.13 0.01 −0.10 −0.32 1.75 4.17

SD 1.29 1.56 1.30 1.57 1.66 1.00 1.14 1.11 1.10 1.47

Med 0.04 −0.12 −0.27 1.07 1.86 0.01 −0.06 −0.31 1.72 4.07

5th −2.21 −2.65 −2.29 −1.11 −0.15 −1.59 −2.06 −2.19 0.09 1.95

95th 2.13 2.46 1.87 3.90 5.09 1.66 1.58 1.36 3.69 7.00

Variance function 2 (Poisson)

CR 1,000 1,000 1,000 1,000 969 1,000 1,000 841 1,000 625

Mean 0.86 0.12 0.22 0.04 7.10 1.37 0.10 0.10 0.04 †

SD 1.30 1.10 1.16 1.19 5.42 1.38 1.01 1.00 1.05 8.45

Med 1.00 0.02 0.16 0.02 6.03 1.37 0.06 0.06 0.04 †

5th −1.39 −1.68 −1.59 −1.93 0.82 −0.90 −1.51 −1.48 −1.75 3.73

95th 2.76 2.01 2.27 2.05 † 3.61 1.91 1.87 1.71 †

Variance function 3 (Negative Binomial)

CR 1,000 1,000 1,000 993 920 1,000 1,000 1,000 1,000 434

Mean 0.74 −0.05 −0.14 1.24 5.80 1.24 −0.08 −0.30 1.80 †

SD 1.40 1.48 1.27 1.63 4.59 1.25 1.14 1.10 1.13 5.71

Med 0.76 −0.11 −0.18 1.03 4.69 1.26 −0.04 −0.24 1.78 †

5th −1.62 −2.39 −2.21 −1.01 0.90 −0.75 −2.06 −2.14 0.03 2.81

95th 3.09 2.52 2.04 3.98 † 3.30 1.75 1.48 3.65 †

Variance function 4 (Gaussian)

CR 1,000 1,000 1,000 1,000 799 1,000 1,000 845 1,000 3

Mean 1.06 0.42 0.51 0.06 † 2.75 0.48 0.45 −0.01 †

SD 1.18 1.11 1.18 1.02 † 1.64 1.18 1.18 1.06 8.16

Med 1.29 0.38 0.48 0.02 8.61 2.76 0.36 0.34 −0.02 †

5th −1.44 −1.22 −1.27 −1.58 0.78 0.03 −1.16 −1.18 −1.71 †

95th 2.60 2.31 2.53 1.82 † 5.47 2.69 2.66 1.77 †

Variance function 5 (Inverse Gamma)

CR 996 1,000 1,000 993 996 997 999 909 987 997

Mean −2.85 −2.06 −2.33 −1.08 −2.10 −6.02 −3.09 −3.23 1.05 −2.20

SD 1.88 1.64 1.58 2.13 2.30 3.13 2.76 2.53 4.36 1.79

Med −2.92 −2.32 −2.53 −1.70 −1.77 −5.68 −3.02 −3.17 −0.00 −2.02

5th −5.81 −4.29 −4.59 −3.42 −6.25 † −7.55 −7.39 −4.61 −5.47

95th 0.32 1.13 0.56 3.10 0.93 −1.46 1.12 0.68 9.33 0.51

Variance function 6 (Other)

CR 1,000 1,000 1,000 1,000 910 1,000 1,000 821 1,000 66

Mean 0.96 0.28 0.37 0.07 9.04 2.05 0.25 0.25 0.00 †
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Table 8 continued

C = 10 C = 50

Gam P NB Gau IG Gam P NB Gau IG

SD 1.29 1.10 1.18 1.10 8.45 1.62 1.10 1.11 1.02 †

Med 1.14 0.22 0.28 0.05 7.18 2.12 0.19 0.18 0.04 †

5th −1.51 −1.38 −1.37 −1.71 0.39 −0.71 −1.34 −1.37 −1.67 2.85

95th 2.73 2.21 2.44 1.95 † 4.69 2.14 2.15 1.59 †

Displayed summary statistics are for t-statistics fromGLMfixed effects estimators, based on robust asymp-
totic standard errors. The t-statistics are based on the (true) null hypothesis H0 : β21 = 1. See notes of
Table 3 for more information

causing the problem, but rather that the whole distributions are centered away from
zero. Glancing over at the right-hand-side panel with the results for C = 50 coun-
tries exposes the persistency of these biases, which more often than not show little to
no improvement compared to the C = 10 case. Table 11 in the Appendix shows t-
statistics (C = 10) for the iterative-structural estimators, which do not suffer from the
incidental parameters problem. Like the FE estimators, the IS estimators showed little
bias for β in the simulations. Table 11 shows that unlike the FE estimators, however,
the same holds for the IS estimators’ t-statistics, which are all very close to zero in
both mean and median.

4 Application

The purpose of this section is to apply the models discussed in the previous section to
data. For this, we employ cross-sectional bilateral export data in nominal US dollars
from the United Nations’ Comtrade Database among 94 countries in the year 2008 and
combine themwith data on bilateral trade costs from the Centre d’Études Prospectives
et d’Informations Internationales’ Geographical Database (2013). In particular, we use
two variables from the latter database: bilateral distance (entitled dist in the variable
list) and common language (entitled comlang_off in the variable list). Rather than
using (log) distance in the original format, we generate five indicator variables based
on the quintiles of log distance (=1 if a pair ij exhibits distance in that quintile, =0
else). This strategy is akin to, e.g., Eaton and Kortum (2002). Letting the linear index
be more flexible (by allowing for non-linearities and interactions) aims at mitigating
concerns that there might be misspecification in the conditional expectation function.
Then, we use these five indicators (we suppress the fifth quintile as the norm in order to
estimate a parameter on the constant) and additionally interact themwith the language
indicator. Altogether themodel then includes nine arguments in the trade cost function:
four distance quintilemain indicator variables and five interacted distance quintilewith
language indicator variables:

Ti j = exp

(
4∑

d=1

βD
d Distd,i j +

5∑
d=1

βL
d Distd,i jLangi j

)
(21)
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While this model seems parsimonious (it excludes other candidates from the trade cost
function such as cultural, economic, historical, and institutional similarity indicators),
it captures many of those aspects due to their collinearity with geographical proximity.
In any case, the analysis here is meant to be illustrative for applied researchers, and
the trade cost function could be altered at discretion.

Beyond those variables, all considered GLM models include a constant and some
include exporter and importer country fixed effects to estimate ei and m j (referred
to as Fixed effects Models), while others include the iteratively determined structural
counterparts to ei and m j as functions of the estimates T̂i j (referred to as iterative-
structuralmodels). Similarly,we tried to estimate twoversions of the quasi-differenced
estimator with differenced-out fixed effects, one relying on GMM (QD-GMM) and
one on Poisson-type estimation (QD-P). QD-GMM failed to converge and we thus
only report results for QD-P.

Table 9 summarizes the parameter estimates and robust standard errors (in paren-
theses) for all considered models15 and, at the bottom of the table, some information
on goodness-of-fit beginning with the Akaike information criterion for the GLMmod-
els. The latter is a particularly meaningful statistic with gravity models as considered
here, since the iterative-structural (IS) models are nested in (are constrained versions
of) the fixed effects (FE) models.

The parameter results may be summarized as follows. First, we observe a relatively
stark difference among the parameter estimates across the considered estimators. Only
a roughpattern is common to all estimators: Trade between countries in thefirst quintile
of distance is higher by orders of magnitude relative to the more distant countries.
Distant country-pairs that share a common language tend to trade more than those
with different languages; but country-pairs in the first distance quintile that share the
same language trade only about half as much as those with different languages.

From our Monte Carlo simulations in the previous section, we would conclude that
the differences across estimators can hardly be due to amisspecification of the variance
process alone, since there was virtually no bias in much smaller samples considered
before. In any case, it turns out that theGamma-GLMand theNegBin-GLMestimators
obtain very similar parameter estimateswhereas those forGaussian-GLMandPoisson-
GLM are relatively different. The Akaike Information Criterion (AIC) suggests that
the Gamma-GLM performs best among both the FE and the IS GLMs each. But
NegBin-GLM is very close to Gamma-GLM in that regard. It is interesting to note
that the AIC for IS estimators is only marginally higher, which suggests some support
for the structural restrictions. The row labeled R2 contains the squared correlation
between predicted and actual trade.Here, theGaussian-FE estimator has the best value,
followed by all IS estimators and the Poisson FE estimator. The last two rows of the
table address prediction accuracy by looking at squared prediction residuals obtained
by leave-one-out cross-validation on a random subsample of 1,000 observations. Both
the mean and median squared prediction residual are considered. Poisson-GLM does
well in terms of the mean squared prediction residuals in both FE and IS estimators,

15 The standard errors for theQD-P estimator are derived from resampling the data 100 times for subsamples
of one-quarter of the number of countries

123



164 P. H. Egger, K. E. Staub

Ta
bl
e
9

E
st
im

at
io
n
re
su
lts
:G

ra
vi
ty

m
od
el
of

tr
ad
e,
C

=
94

,
N

=
8,
83

6

Fi
xe
d
ef
fe
ct
s
es
tim

at
or
s

It
er
at
iv
e-
st
ru
ct
ur
al
es
tim

at
or
s

Q
D
es
tim

at
or

G
am

m
a

Po
is
so
n

N
eg
B
in

G
au
ss
ia
n

G
am

m
a

Po
is
so
n

N
eg
B
in

G
au
ss
ia
n

Po
is
so
n

di
st
1

10
.1
0∗

∗∗
7.
10

∗∗
∗

9.
82

∗∗
∗

8.
25

∗∗
∗

8.
89

∗∗
∗

7.
08

∗∗
∗

8.
88

∗∗
∗

6.
05

∗∗
∗

7.
04

∗∗
∗

(0
.1
6)

(0
.2
6)

(0
.1
5)

(0
.8
5)

(0
.2
0)

(0
.2
9)

(0
.2
0)

(0
.5
1)

(0
.2
5)

di
st
2

2.
23

∗∗
∗

1.
05

∗∗
∗

2.
08

∗∗
∗

0.
29

2.
26

∗∗
∗

1.
03

∗∗
∗

2.
24

∗∗
∗

−0
.0
8

0.
18

(0
.1
0)

(0
.2
8)

(0
.0
9)

(1
.3
2)

(0
.1
8)

(0
.2
8)

(0
.1
8)

(0
.5
2)

(0
.2
7)

di
st
3

1.
24

∗∗
∗

1.
20

∗∗
∗

1.
16

∗∗
∗

0.
48

1.
36

∗∗
∗

1.
21

∗∗
∗

1.
36

∗∗
∗

0.
56

0.
50

∗
(0
.0
8)

(0
.2
8)

(0
.0
7)

(0
.5
0)

(0
.0
9)

(0
.2
8)

(0
.0
9)

(0
.5
1)

(0
.2
7)

di
st
4

0.
80

∗∗
∗

0.
81

∗∗
∗

0.
75

∗∗
∗

0.
09

0.
97

∗∗
∗

0.
82

∗∗
∗

0.
96

∗∗
∗

0.
28

0.
31

(0
.0
8)

(0
.3
0)

(0
.0
7)

(0
.9
5)

(0
.0
9)

(0
.2
9)

(0
.0
9)

(0
.5
4)

(0
.3
4)

la
ng

×d
is
t1

−5
.6
2∗

∗∗
−4

.5
4∗

∗∗
−5

.5
5∗

∗∗
−4

.9
7∗

∗∗
−5

.5
8∗

∗∗
−4

.5
2∗

∗∗
−5

.5
8∗

∗∗
−3

.9
0∗

∗∗
−4

.7
9∗

∗∗
(0
.1
9)

(0
.2
4)

(0
.1
9)

(0
.4
3)

(0
.2
4)

(0
.2
1)

(0
.2
4)

(0
.2
0)

(0
.2
2)

la
ng

×d
is
t2

0.
26

∗∗
0.
60

∗∗
0.
28

∗∗
0.
81

-0
.6
1∗

∗∗
0.
64

∗∗
−0

.6
0∗

∗∗
1.
35

∗∗
∗

1.
53

∗∗
∗

(0
.1
3)

(0
.3
0)

(0
.1
2)

(0
.9
9)

(0
.2
1)

(0
.2
8)

(0
.2
1)

(0
.3
6)

(0
.3
6)

la
ng

×d
is
t3

0.
88

∗∗
∗

−0
.0
24

0.
86

∗∗
∗

−0
.4
5

0.
26

−0
.0
3

0.
25

−0
.2
9

0.
31

(0
.1
8)

(0
.3
1)

(0
.1
7)

(0
.5
7)

(0
.1
8)

(0
.2
6)

(0
.1
8)

(0
.3
2)

(0
.2
5)

la
ng

×d
is
t4

0.
35

∗∗
∗

0.
03

0
0.
38

∗∗
∗

−0
.4
2

0.
42

∗∗
∗

0.
06

0.
41

∗∗
∗

−0
.4
0

0.
54

∗
(0
.1
3)

(0
.2
9)

(0
.1
2)

(0
.5
6)

(0
.1
4)

(0
.1
9)

(0
.1
4)

(0
.2
9)

(0
.2
94

)

123



GLM estimation of trade gravity models 165

Ta
bl
e
9

co
nt
in
ue
d

Fi
xe
d
ef
fe
ct
s
es
tim

at
or
s

It
er
at
iv
e-
st
ru
ct
ur
al
es
tim

at
or
s

Q
D
es
tim

at
or

G
am

m
a

Po
is
so
n

N
eg
B
in

G
au
ss
ia
n

G
am

m
a

Po
is
so
n

N
eg
B
in

G
au
ss
ia
n

Po
is
so
n

la
ng

×d
is
t5

0.
58

∗∗
∗

0.
72

∗
0.
57

∗∗
∗

−0
.2
8

1.
07

∗∗
∗

0.
77

∗∗
1.
07

∗∗
∗

−0
.0
5

1.
14

∗∗
∗

(0
.1
6)

(0
.3
8)

(0
.1
5)

(0
.5
4)

(0
.1
8)

(0
.3
2)

(0
.1
7)

(0
.5
2)

(0
.3
3)

A
IC

×1
0−

5
0.
11

9
97

5.
0

0.
12

0
0.
24

6
0.
13

4
97

5.
7

0.
13

4
0.
25

0
0.
00

6

R
2

0.
25

1
0.
43

9
0.
25

3
0.
63

0
0.
43

6
0.
43

6
0.
43

6
0.
43

5
–

M
ea
n

SP
R

×1
0−

9
5,
33

3
17

7
3,
04

9
1,
16

3,
21

1
20

6
10

4
20

6
10

3
–

M
ed
ia
n
SP

R
4,
87

9
20

8,
64

4
4,
35

5
5,
98

6
92

,8
24

21
7,
45

4
92

,0
29

70
2,
86

7
–

T
he

ta
bl
e
co
nt
ai
ns

es
tim

at
es

of
a
gr
av
ity

m
od
el
w
ith

sp
ec
ifi
ca
tio

n
(2
1)
.R

ob
us
ts
ta
nd
ar
d
er
ro
rs
in
pa
re
nt
he
si
s.
B
oo
ts
tr
ap
pe
d
st
an
da
rd

er
ro
rs
fo
rQ

D
-P
oi
ss
on

in
pa
re
nt
he
si
s.
T
he

va
ri
ab
le
s
di
st
1,
...
,d
is
t4

ar
e
in
di
ca
to
r
va
ri
ab
le
s
=
1
if
th
e
co
un
tr
y-
pa
ir
is
in

th
e
1,
...
,4

di
st
an
ce

qu
in
til
e.
T
he

va
ri
ab
le
s
la
ng

×d
is
t1
,..
.,l
an
g×

di
st
5
ar
e
in
te
ra
ct
io
ns

of
th
e
di
st
an
ce

qu
in
til
e
in
di
ca
to
rs
w
ith

an
in
di
ca
to
r
va
ri
ab
le
=
1
if
th
e
co
un
tr
y-
pa
ir
sh
ar
es

th
e
sa
m
e
la
ng
ua
ge
.

∗ ,
∗∗

an
d

∗∗
∗ i

nd
ic
at
e
st
at
is
tic
al

si
gn
ifi
ca
nc
e
at
th
e
10
,5

an
d
1
%

le
ve
l.
A
IC

is
th
e
A
ka
ik
e
In
fo
rm

at
io
n
C
ri
te
ri
on
.
R
2
is
th
e
sq
ua
re
d
co
rr
el
at
io
n
be
tw
ee
n
ou
tc
om

e
an
d
fit
te
d

va
lu
es
.“
M
ea
n
SP

R
”
an
d
“M

ed
ia
n
SP

R
”
ar
e
th
e
av
er
ag
e
an
d
m
ed
ia
n
sq
ua
re
d
pr
ed
ic
tio

n
re
si
du
al
s
ba
se
d
on

le
av
e-
on
e-
ou
tc
ro
ss
-v
al
id
at
io
n
on

a
ra
nd
om

ly
dr
aw

n
su
bs
am

pl
e
of

1,
00

0
ob

se
rv
at
io
ns

123



166 P. H. Egger, K. E. Staub

0
20

40
60

R
es

id
ua

ls

0 10000 20000 30000 40000

Predicted conditional mean

Gamma

0
50

00
10

00
0

15
00

0

R
es

id
ua

ls

0 50 100 150

Predicted conditional mean

Poisson
0

20
40

60

R
es

id
ua

ls

0 10000 20000 30000

Predicted conditional mean

NegBin

0
50

00
00

0
1.

00
e+

07

R
es

id
ua

ls

0 50 100 150

Predicted conditional mean

Gaussian

Fig. 1 Fixed Effects estimators: Predictions and Pearson residuals. Notes: The figure plots predictions
of trade flows against Pearson residuals for fixed effects GLM estimates of the trade gravity model (21),
corresponding to columns 2–5 of Table 9

but not so well in terms of the median squared prediction residual, where Gamma and
NegBin again display the lowest values within the classes of FE and IS estimators.

Hence, in view of the similarity in the parameter estimates and the comparably low
values of the Akaike Information Criterion, Gamma-GLM and NegBin-GLM seem to
be the preferred estimators with the data and specification at hand.

Let us define the Pearson residuals of a GLM model of the family type 
 as

εPearson
,i j = Xi j − μ̂i j

σ̂
X,i j
, (22)

where σ̂
X,i j is the square root of the variance function evaluated at the estimated value
of the conditional mean, μ̂i j . With a proper specification of the variance function, it
should be the case that εPearson
,i j is independent of μ̂i j . This is illustrated for the four
FE GLMs by way of scatterplots in Fig. 1. In the scatterplots, we include a linear
regression line to visualize the relative mean-dependence of the Pearson residuals. If
the variance process was correctly specified, we would expect a horizontal line, i.e..
(mean-)independence of the Pearson residuals of μ̂i j . This is largely the case with
Gamma-GLM and NegBin-GLM and less so with Poisson-GLM and Gaussian-GLM.
Hence, the Pearson residual plots provide further evidence for the first two models.

Furthermore, we may scrutinize the question of the proper specification of the
variance function by way of so-called deviance residuals:
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Fig. 2 Fixed effects estimators: Density of deviance residuals. Notes: The figure plots kernel density of
deviance residuals for fixed effectsGLMestimates of the trade gravitymodel (21), corresponding to columns
2–5 of Table 9

εdeviance
,i j = sign(Xi j − μ̂i j )√
2

[
f
(Xi j ) − f
(μ̂i j )

]
φ, (23)

where f
(·) measures the linear exponential family-
 conditional density evaluated
at the argument. The statistic εdeviance
,i j should have mean zero and be approximately
normally distributed for any GLM of family type 
 (cf. Pierce and Schafer 1986).
We shed light on this issue for the FE GLMs in Fig. 2.16 To facilitate the readability,
we present kernel density plots of εdeviance
,i j illustrated by a black dashed curve and
add a normal density plot based on the same variance as model 
. Figure 2 suggests
that, among the consideredmodels, NegBin-GLMperforms best, followed by Poisson-
GLM.Hence, there appears to be some indication of a larger degree ofmisspecification
of the variance function for Gamma-GLM than for NegBin-GLM. Overall, Fig. 2 in
conjunction with Fig. 1 and the goodness-of-fit statistics from Table 9 lead us to
classify NegBin-GLM as the preferred model for the data and specification at hand.

5 Conclusions

This paper alludes to issues in the application of generalized linear models for the
estimation of (structural) gravity equations of bilateral international trade. The cur-

16 Corresponding figures for the IS estimators can be found in the Appendix (Figs. 3, 4).
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rent status of research on the matter is the following. First, in a host of theoretical
models, bilateral trade flows are structurally determined by an exponential function
based on a log-linear index (see Arkolakis et al 2012). Second, it has been remarked
and well received that exponential-family, generalized linear models rather than log-
linearized models should be employed for consistent estimation (see Santos Silva and
Tenreyro 2006). The literature appears to favor Poisson-, Gamma- and, to a lesser
extent, Gaussian-type GLMs in both analysis and application. Other approaches such
as the inverse Gaussian or the Negative Binomial model tend to be ignored. Yet other
approaches such as quasi-differencing and generalized method of moments estimation
have not been considered at all. As to the model selection, researchers are recom-
mended to resort to goodness-of-fit measures (see Santos Silva and Tenreyro 2006) or
not given strong guidance at all. In terms of small-to-medium sample analysis provided
in earlier work, the data-generating process has never been selected in accordance with
structural models of bilateral trade, and little is known as to how fixed-country-effects
estimators fare relative to structural-iterative models.

This paper takes the generic gravity model of bilateral trade literally and focuses on
data-generating processes that are fully aligned with general equilibrium or resource
constraints present in such models. The paper presents a rich set of Monte Carlo
results for various sizes of the world economy (in terms of the number of countries)
and various assumptions about the error process. Moreover, the paper takes those
insights to cross-sectional data for the year 2008 and illustrates issues with the model
selection. The main insights of the paper are the following. First, we find that the
Poisson and Negative Binomial quasi-maximum likelihood estimators as well as the
quasi-differencedGMMestimators appear to be the best all-round estimators for small
as well as larger sample cases and for various stochastic processes. However, we
encountered difficulties with the GMM estimator in our application with year 2008
data. For the chosen specification, the Negative Binomial model was the preferred
model. A further insight is that the iterative-structural GLM estimators perform better
in the simulations than fixed-country-effects estimators due to their greater parsimony.
We also illustrated the potentially seriouslymisleading inferencewhich can result from
using asymptotic standard errors with the fixed effects approach. This is due to the
incidental parameters problem, which both iterative-structural and quasi-differenced
estimators avoid.

The Monte Carlo simulation revealed severe problems with the quasi-differenced
Poisson model which is based on ratios of bilateral exports.17 Likewise, the poor per-
formance of the inverse Gaussian model emerged both in the Monte Carlo simulations
with non-inverse-Gaussian data and in the application with real data. It is possible
that the problems associated with the Inverse Gaussian estimator are to some degree
numerical, though; further research is needed to determine whether using better start-
ing values and optimizing algorithms might improve this estimator’s performance.

17 Some of these issues might carry over to the tetradic-differenced estimators as discussed in Head and
Mayer (2014) which are also based on ratios of exports.
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Appendix

First-order conditions for fixed effects

The fixed effects ei and m j are estimated as the coefficients on a set of exporter and
importer dummy variables, respectively:

ei =
C∑

k=2

ek Dki , m j =
C∑

k=2

mkDkj ,

where Dki = 1(i = k), k = 2, . . . ,C are the exporter indicator variables; and
Dkj = 1( j = k), k = 2, . . . ,C , the importer indicator variables. The constant β0
absorbs e1 and m1. Then the 2 × (C − 1) first-order conditions for the parameters ek
and mk , for k = 2, . . . ,C , are
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Fig. 3 Iterative structural estimators: Predictions and Pearson residuals.Notes: The figure plots predictions
of trade flows against Pearson residuals for iterative structural GLM estimates of the trade gravity model
(21), corresponding to columns 6–9 of Table 9
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Fig. 4 Iterative-structural estimators: Density of deviance residuals. Notes: The figure plots kernel density
of deviance residuals for iterative-structural GLM estimates of the trade gravity model (21), corresponding
to columns 6–9 of Table 9

C∑
i=1

C∑
j=1

[
Xi j − exp

(∑C
k=2 ek Dki + ∑C

k=2 mkDkj + d ′
i jβ

)]
V (Xi j )

× exp

(
C∑

k=2

ek Dki +
C∑

k=2

mkDkj + d ′
i jβ

)
Dki = 0,

C∑
i=1

C∑
j=1

[
Xi j − exp

(∑C
k=2 ek Dki + ∑C

k=2 mkDkj + d ′
i jβ

)]
V (Xi j )

× exp

(
C∑

k=2

ek Dki +
C∑

k=2

mkDkj + d ′
i jβ

)
Dkj = 0.
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Table 10 Alternative scenario α = −2 (1,000 replications)

Iterative-structural estimators Fixed effects estimators QD

Gam P NB Gau IG Gam P NB Gau IG GMM P

Variance function 1 (Gamma)

CR 1,000 1,000 1,000 989 1,000 1,000 1,000 1,000 997 1,000 1,000 1,000

Mean 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.43 1.25 0.99 0.95

SD 0.00 0.01 0.00 0.02 0.00 0.14 0.17 0.14 0.85 0.25 0.20 0.24

Med 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 1.26 1.23 0.98 0.92

5th 1.00 1.00 1.00 1.00 1.00 0.77 0.73 0.75 0.75 0.87 0.66 0.61

95th 1.00 1.00 1.00 1.02 1.00 1.21 1.30 1.21 2.54 1.71 1.34 1.38

Variance function 2 (Poisson)

CR 1,000 1,000 1,000 1,000 999 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Mean 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.03 1.00 1.02

SD 0.01 0.00 0.00 0.00 0.01 0.03 0.01 0.02 0.01 0.06 0.03 0.07

Med 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.02 1.00 1.01

5th 1.00 1.00 1.00 1.00 1.00 0.95 0.97 0.97 0.98 0.94 0.95 0.93

95th 1.00 1.00 1.01 1.00 1.00 1.05 1.02 1.03 1.02 1.14 1.04 1.13

Variance function 3 (Negative Binomial)

CR 1,000 1,000 1,000 990 997 1,000 1,000 1,000 1,000 999 1,000 1,000

Mean 1.00 1.00 1.00 1.00 1.00 1.02 1.00 0.99 1.53 1.41 0.99 0.96

SD 0.00 0.00 0.00 0.02 0.00 0.15 0.18 0.15 1.79 0.35 0.22 0.27

Med 1.00 1.00 1.00 1.00 1.00 1.02 0.99 0.99 1.26 1.36 1.00 0.93

5th 1.00 1.00 1.00 1.00 1.00 0.77 0.72 0.74 0.73 0.93 0.65 0.61

95th 1.00 1.00 1.00 1.02 1.00 1.27 1.33 1.25 2.91 2.03 1.34 1.42

Variance function 4 (Gaussian)

CR 1,000 1,000 1,000 1,000 998 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Mean 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.01

SD 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.06 0.01 0.06

Med 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

5th 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.99 1.00 0.97 0.99 0.97

95th 1.00 1.00 1.00 1.00 1.00 1.02 1.01 1.01 1.00 1.06 1.01 1.06

Variance function 5 (Inverse Gaussian)

CR 993 999 999 982 993 993 1,000 1,000 992 994 1,000 1,000

Mean 1.00 1.00 1.00 1.00 1.00 0.97 0.97 0.97 1.16 0.98 0.96 0.96

SD 0.00 0.01 0.00 0.06 0.06 0.06 0.19 0.12 0.90 0.07 0.18 0.12

Med 1.00 1.00 1.00 1.00 1.00 0.97 0.97 0.97 0.98 0.98 0.97 0.97

5th 1.00 1.00 1.00 1.00 1.00 0.90 0.82 0.87 0.81 0.93 0.79 0.84

95th 1.00 1.00 1.00 1.00 1.00 1.04 1.12 1.05 2.36 1.05 1.10 1.05

Variance function 6 (Other)

CR 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Mean 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.01
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Table 10 continued

Iterative-structural estimators Fixed effects estimators QD

Gam P NB Gau IG Gam P NB Gau IG GMM P

SD 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.01 0.00 0.04 0.01 0.04

Med 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00

5th 1.00 1.00 1.00 1.00 1.00 0.97 0.99 0.98 0.99 0.96 0.98 0.95

95th 1.00 1.00 1.00 1.00 1.00 1.03 1.01 1.02 1.01 1.08 1.02 1.08

See Table 3

Table 11 t-statistics for iterative-structural estimators (baseline specification, C = 10), 1,000 replications

Gam P NB Gau IG

Variance function 1 (Gamma)

CR 1,000 1,000 1,000 909 988

Mean 0.00 0.02 0.02 0.11 0.01

SD 0.04 0.08 0.11 0.27 0.14

Med 0.00 0.01 0.01 0.01 0.00

5th −0.01 −0.01 −0.01 −0.02 −0.01

95th 0.01 0.05 0.03 0.66 0.02

Variance function 2 (Poisson)

CR 1,000 1,000 1,000 998 818

Mean 0.01 0.04 0.04 0.09 0.12

SD 0.12 0.17 0.23 0.27 1.80

Med 0.00 0.04 0.02 0.10 0.00

5th −0.01 −0.23 −0.13 −0.42 −0.01

95th 0.04 0.31 0.25 0.53 0.12

Variance function 3 (Negative Binomial)

CR 1,000 1,000 1,000 911 816

Mean 0.01 0.02 0.02 0.12 0.07

SD 0.06 0.08 0.12 0.29 1.14

Med 0.00 0.01 0.00 0.01 0.00

5th −0.00 −0.01 −0.01 −0.02 −0.01

95th 0.01 0.05 0.03 0.69 0.05

Variance function 4 (Gaussian)

CR 1,000 1,000 1,000 1,000 594

Mean 0.01 0.07 0.06 0.05 †

SD 0.13 0.35 0.23 0.99 †

Med 0.00 0.05 0.02 −0.01 0.00

5th −0.01 −0.56 −0.20 −1.49 −0.01

95th 0.03 0.76 0.46 1.73 0.17
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Table 11 continued

Gam P NB Gau IG

Variance function 5 (Inverse Gamma)

CR 996 999 999 982 996

Mean −0.03 −0.01 −0.00 0.07 −0.05

SD 0.23 0.18 0.14 0.27 0.26

Med 0.00 0.02 0.01 0.06 0.00

5th −0.10 −0.10 −0.06 −0.22 −0.35

95th 0.03 0.09 0.07 0.41 0.06

Variance function 6 (Other)

CR 1,000 1,000 1,000 1,000 691

Mean 0.02 0.06 0.05 0.05 0.10

SD 0.15 0.25 0.21 0.92 1.94

Med 0.00 0.05 0.02 0.03 0.00

5th −0.01 −0.41 −0.20 −1.50 −0.01

95th 0.03 0.53 0.33 1.60 0.07

Displayed summary statistics are for t-statistics from iterative structural GLM estimators, based on robust
asymptotic standard errors. See notes of Table 3 for more information

Table 12 Negative Binomial Quasi-generalized pseudo-maximum likelihood estimation (Baseline speci-
fication, 1,000 replications)

C = 10 C = 50

IS FE IS FE

Variance function 1 (Gamma)

CR 565 966 438 784

Mean 1.000 0.989 1.000 0.997

SD 0.008 0.097 0.001 0.013

Med 1.000 0.986 1.000 0.997

5th 0.994 0.843 0.998 0.975

95th 1.003 1.164 1.002 1.018

Variance function 2 (Poisson)

CR 202 0 8 0

Mean 1.001 – 0.999 –

SD 0.006 – 0.002 –

Med 1.001 – 0.999 –

5th 0.998 – 0.997 –

95th 1.009 – 1.002 –

Variance function 3 (Negative Binomial)

CR 630 931 697 923

Mean 1.000 0.995 1.000 0.998

SD 0.008 0.106 0.001 0.018

123



174 P. H. Egger, K. E. Staub

Table 12 continued

C = 10 C = 50

IS FE IS FE

Med 1.000 0.987 1.000 0.998

5th 0.995 0.833 0.998 0.970

95th 1.003 1.186 1.002 1.028

Variance function 4 (Gaussian)

CR 354 0 28 0

Mean 1.001 – 1.000 –

SD 0.006 – 0.002 –

Med 1.001 – 1.000 –

5th 0.997 – 0.997 –

95th 1.007 – 1.002 –

Variance function 5 (Inverse Gamma)

CR 256 352 235 364

Mean 1.000 0.984 1.000 0.974

SD 0.004 0.063 0.001 0.029

Med 1.000 0.978 1.000 0.970

5th 0.993 0.931 1.000 0.957

95th 1.003 1.071 1.000 0.987

Variance function 6 (Other)

CR 348 0 34 0

Mean 1.002 – 1.000 –

SD 0.006 – 0.002 –

Med 1.001 – 0.999 –

5th 0.998 – 0.997 –

95th 1.011 – 1.003 –

See Table 3
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