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Abstract. In this article, we describe how to fit panel-data ordered logit mod-
els with fixed effects using the new community-contributed command feologit.
Fixed-effects models are increasingly popular for estimating causal effects in the
social sciences because they flexibly control for unobserved time-invariant hetero-
geneity. The ordered logit model is the standard model for ordered dependent
variables, and this command is the first in Stata specifically for this model with
fixed effects. The command includes a choice between two estimators, the blow-
up and cluster (BUC) estimator introduced in Baetschmann, Staub, and Winkel-
mann (2015, Journal of the Royal Statistical Society, Series A 178: 685–703) and
the BUC-τ estimator in Baetschmann (2012, Economics Letters 115: 416–418).
Baetschmann, Staub, and Winkelmann (2015) showed that the BUC estimator
has good properties and is almost as efficient as more complex estimators such
as generalized method-of-moments and empirical likelihood estimators. The com-
mand and model interpretations are illustrated with an analysis of the effect of
parenthood on life satisfaction using data from the German Socio-Economic Panel.

Keywords: st0596, feologit, panel data, ordered dependent variables, logistic mod-
els, fixed effects, blow-up and cluster estimator

1 Introduction

While originating in the biometrics literature, regression models for ordered responses
are now ubiquitous in the social sciences (Boes and Winkelmann 2006). One factor
contributing to the widespread use of ordered responses is that Likert-type scales are
the default way in which individual, household, and firm surveys collect information on
issues that are otherwise difficult to measure, such as attitudes and beliefs. By far, the
most common cross-sectional regression models for ordered responses are the ordered
logit and ordered probit models. When analyzing ordinal panel data, researchers are
frequently interested in applying extensions of these models that somehow account for
the longitudinal nature of the data. The simplest approach, which we consider in this
article, is specifying an additional unobservable individual-specific error term. Under
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the assumptions that this error term is normally distributed and independent of the
regressors, the models are known as the random-effects ordered logit or random-effects
ordered probit (see, for example, Cameron and Trivedi [2005]), and they are imple-
mented in Stata with the commands xtologit and xtoprobit, respectively.

Often, however, these distributional and independence assumptions on the individu-
al-specific error term are undesirable. Fixed-effects models relax them: the distribution
of the individual-specific error term and its dependence on the regressors are left com-
pletely unrestricted (compare, for example, Wooldridge [2010]). This feature of fixed-
effects models is useful for the estimation of causal effects because it accounts for any
potential endogeneity stemming from time-invariant characteristics. But because no
default approach for fitting fixed-effects models for ordered responses exists, researchers
are often faced with the choice of either fitting linear models, which are often inappro-
priate for ordinal data, or fitting random-effects ordered logit or probit models, which
impose the strong assumptions mentioned above.

Because a fixed-effects estimator exists for the binary logit model, several different
estimators for fixed-effects ordered logit models can be obtained using the binary logit
model as a building block: the ordinal response variable can be transformed into bi-
nary responses, which then can be used for estimation and combined back differently
to provide a single set of estimates. For the ordered probit model, in contrast, a similar
approach is infeasible because no fixed-effects estimator for the binary probit model
exists. Baetschmann, Staub, and Winkelmann (2015) studied several approaches avail-
able for the fixed-effects ordered logit model and showed that the so-called blow-up and
cluster (BUC) estimator has good properties and is almost as efficient as more complex
estimators such as generalized method-of-moments and empirical likelihood estimators.
In this article, we discuss the BUC estimator as well as a more restricted version of it
that makes it possible to fit additional model parameters—the BUC-τ estimator intro-
duced in Baetschmann (2012)—and show how these estimators can be implemented in
Stata using the community-contributed command feologit.

An integral part of our discussion focuses on the various potential objects of interest
in this model, such as marginal effects (MEs), odds ratios, etc., and on whether they
can or cannot be estimated, and if so, how. We further introduce a new specification
test of the more restrictive assumptions relating to the additional threshold parameters
estimated by BUC-τ . The test is simple to implement, and we show in an example
using Stata syntax how BUC and BUC-τ estimates can be used to this end. Finally, we
illustrate the use of feologit and the interpretation of the estimates in an application of
the effect of motherhood on women’s life satisfaction, which uses data from the German
Socio-Economic Panel (SOEP).

We review the fixed-effects ordered logit model and the BUC and BUC-τ estimators
in the next section. The syntax for feologit is presented in section 3.1. Next, section 4
gives a guide on how to interpret estimates. Section 5 exemplifies the use of feologit
and possible interpretations of the estimates in the application to life satisfaction and
provides a test of the BUC versus BUC-τ estimates. Section 5 offers some concluding
remarks.
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2 Fixed-effects ordered logit models

The fixed-effects ordered logit model uses the latent variable y∗ to relate the observable
characteristics x to the observable ordered dependent variable y, which can take values
1, . . . ,K. The latent variable y∗it for individual i at time t depends linearly on xit and
the two unobservable characteristics αi and εit:

y∗it = x′
itβ + αi + εit i = 1, . . . , N t = 1, . . . , T

The vector of covariates xit does not include an intercept because the αi act as
individual-specific intercepts. We use a balanced panel for notational simplicity; but
extending the model to imbalanced panels (t = 1, . . . , Ti) is trivial, and the application
in section 5 uses such an imbalanced panel. The time-invariant, individual-specific
part of the unobservables (αi) is called the fixed effect and can statistically depend on
xit. The following observation rule ties the latent variable y∗it to the observed ordered
variable yit through the thresholds τik:

yit = k if τik < y∗it ≤ τik+1 k = 1, . . . ,K

In the most flexible version of the model, the thresholds can vary between individuals,
as indicated by the subscript i in τik. Besides the stipulation of the lowest and highest
thresholds as plus and minus infinity, the only assumption about the individual-specific
thresholds is that they are increasing for each person:

τi1 = −∞; −∞ < τik < τik+1 < ∞, ∀k = 2, . . . ,K−1; τiK+1 = ∞ (1)

Moreover, the fixed-effects ordered logit model assumes that the time-varying unob-
servable terms, εit, are independent and identically distributed with standard logistic
cumulative density function, hence the name of the model:

F (εit|xit, αi) = F (εit) =
1

1 + exp(−εit)
≡ Λ(εit)

The probability of observing outcome k for individual i at time t is therefore

Pr(yit = k|xit, αi) = Λ(τik+1 − x′
itβ − αi)− Λ(τik − x′

itβ − αi) (2)

This probability depends on xit and β, the parameter of primary interest. However, it
also depends on αi, τik, and τik+1. As can be seen from (2), without further assumptions
on the thresholds, only τik − αi ≡ αik is identified because we can always define τ̃ik =
τik + η and α̃i = αi − η for any η ∈ R.1

1. On a more fundamental level, the parameters β and αik are identified only by the normalizing
assumption that εit follows a standard (rather than any) logistic distribution, which fixes εit’s
variance. Without this normalization, only β/var(εit) and αik/var(εit) are identified. Thus, iden-
tification and consistent estimation in this article refer to identification and consistency up to scale,
as is the case for most standard latent-variable models, such as logit, probit, and their ordered and
multinomial generalizations.
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Direct estimation of αik is difficult. Generally, estimation of αik uses only informa-
tion of the T observations of individual i. Thus, if the time dimension T is fixed—as
is generally assumed in short panels—there are only a finite number of observations to
estimate αik even when the total number of observations NT grows to infinity. Con-
sequently, the fixed effects αik cannot be estimated consistently, and, in general, their
inconsistency spills over to inconsistency of β, the parameters common to all obser-
vations. This situation is known as the incidental parameters problem (Neyman and

Scott 1948; Lancaster 2000). In short panels, the resulting bias in β̂ can be substantial
(Abrevaya 1997; Greene 2004). A consistent estimator of β can be obtained by collaps-
ing yit into a binary variable and then applying the well-known conditional maximum
likelihood (CML) estimator (Andersen 1970; Chamberlain 1980).

2.1 CML estimator

The CML estimator is well known. But because the BUC estimator for the fixed-effects
ordered logit model is based on the CML, we present it in some detail to fix notation.
In Stata, this estimator is implemented in the command clogit and in the panel-data
command xtlogit with the option fe, which relies on clogit. Similarly, feologit
also relies on clogit.

Let dkit denote the binary variable that results from dichotomizing the ordered vari-
able at the cutoff point k: dkit = 1(yit ≥ k). This is the dependent variable of the CML

estimator. Let

gki =

T∑
t=1

dkit

be the observed number of ones of the dependent variable for individual i. Now, consider
the probability of observing dk

i = (dki1, . . . , d
k
iT )

′ conditional on observing gki ones. It
can be shown that this probability is

Pk
i (β) ≡ Pr

(
dk
i

∣∣∣∣∣
T∑

t=1

dkit = gki

)
=

exp(dk′
i xiβ)∑

j∈Bi
exp(j′xiβ)

(3)

where j denotes a vector of dimension T with each element jt equal to 0 or 1 and with∑T
t=1 jt = gki . Further, Bi denotes the set of all possible j-vectors with gki ones and

T − gki zeros. There are
(
T
gk
i

)
= T !/{gki !(T − gki )!} such combinations. Crucially, this

probability (3) does not depend on αi and the thresholds. Chamberlain (1980) showed
that maximizing the conditional log likelihood (LL)

LL
k(b) =

N∑
i=1

logPk
i (b) (4)

results in a consistent estimator for β. Therefore, β of the fixed-effects ordered logit
model can be fit by first dichotomizing the ordered dependent variable into a binary
one and then applying the standard CML estimator. However, different cutoff points
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k can be used, and using only one of them leads to loss of information and, therefore,
to inefficiency. Further details of the CML estimator such as first-order conditions and
asymptotic variance can be found, for example, in Baetschmann, Staub, and Winkel-
mann (2015).

2.2 BUC estimator

Several ideas exist to combine the information of the CML estimators obtained from
dichotomizing samples at different cutoff points (see Baetschmann, Staub, and Winkel-
mann [2015]). The BUC estimator presented here combines the LL functions resulting
from different cutoff points, leading to a one-step estimator of β. The LL function for
this estimator is

LL
BUC(b) =

K∑
k=2

LL
k(b) (5)

where LLk(b) is defined as in (4) and the BUC estimator is the one that maximizes (5).
It can also be regarded as a restricted CML estimator because it imposes the restriction

that β̂
2
= · · · = β̂

K
. We call this the BUC estimator because this describes how

the estimator is implemented: first, every individual’s observations in the sample are
replaced with K−1 copies or clones of itself (“blow up” the sample size); and, then, each
clone is dichotomized at a different cutoff point. We then use the entire inflated sample
to estimate β by applying the CML estimator. Because the clones of the same individual
are not independent of each other, we have to compute standard errors that are clustered
at the individual level. Baetschmann, Staub, and Winkelmann (2015) have shown that
combining the likelihoods leads to a large efficiency gain compared with using only one
cutoff. In addition, the BUC estimator has less convergence problems compared with
efficient estimators like a two-step generalized method-of-moments estimator, and the
efficiency loss in finite samples is negligible.

2.3 BUC-τ estimator assuming constant thresholds

The standard ordered logit model for cross-sectional data assumes that the thresholds
are constant across individuals. The BUC estimator is conformable with a more general
class of models because it is also consistent with models where each individual has
different thresholds. If we are willing to make the additional assumption of constant
thresholds, Baetschmann (2012) suggested a procedure based on the BUC estimator
that allows us to estimate the thresholds, too. We will call this estimator BUC-τ . The
additional assumption for the more restrictive model is that τik = τjk = τk for all
individuals i and j. Because the rest of the model is unchanged, the probability of
observing outcome k for individual i at time t is

Pr(yit = k|xit, αi) = Λ(τk+1 − x′
itβ − αi)− Λ(τk − x′

itβ − αi)

As in the more flexible model described above, we cannot distinguish between terms
that are constant within an individual. So if all thresholds (τ) increase by the same
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amount as the individual fixed effect (α), the same probability results. We deal with
this underidentification by restricting the second threshold to 0. Assumption (1) of the
model therefore changes to

τ1 = −∞; τ2 = 0; 0 < τk < τk+1 < ∞, k = 3, . . . ,K−1; τK+1 = ∞

Without the restriction τ2 = 0, only the differences between the thresholds are identified.

The idea of the BUC-τ estimator is to dichotomize the observations within a person
at different cutoff points and then to apply the standard CML estimator. This allows us
to estimate the thresholds, too. Let di denote the resulting vector of the dichotomized
dependent variable for individual i and gi the number of ones in di. In addition, define
τ cut
i as the vector of thresholds used as cutoff points for person i. The conditional

probability of observing di conditional on gi, when di results from dichotomizing at
different cutoff points, is

Pr

(
di

∣∣∣∣∣
T∑

t=1

dit = gi

)
=

exp{d′
i(xiβ − τ cut

i )}∑
j∈Bi

exp{j′(xiβ − τ cut
i )}

(6)

where j denotes again a vector with zeros and ones with
∑T

t=1 dit = gi and Bi the set
of all possible j-vectors with gi ones and T − gi zeros.

As an example, consider a person who is observed for two time periods. For the
BUC estimator, we would produce K − 1 copies of this person’s observations—that is,
K − 1 clones of the person—and dichotomize each clone at a different cutoff point.
Thus, one of these clones, say, i, would be dichotomized at the cutoff point 3, resulting
in di = {1(yi1 ≥ 3), 1(yi2 ≥ 3)}′ with corresponding τ cut

i = (τ3 , τ3)
′. The next clone,

j, dichotomized at 4, would result in dj = {1(yj1 ≥ 4), 1(yj2 ≥ 4)}′ with corresponding
τ cut
j = (τ4 , τ4)

′.

In contrast, for the BUC-τ estimator, the first observation of clone i might be di-
chotomized at the cutoff point 3 and the second observation at the cutoff point 4,
resulting in the vectors di = {1(yit ≥ 3), 1(yit ≥ 4)}′ and τ cut

i = (τ3 , τ4)
′. Thanks to

this heterogeneity in the cutoff point within a conditional likelihood contribution (that
is, within a clone), the expression depends also on the thresholds, as can be seen in (6).

In the case of the BUC estimator, we combine the (K − 1) possible clones of each
person to estimate β. However, if different cutoff points within a clone are allowed as
with BUC-τ , the number of possible clones of each person is (K − 1)T , and the sample
size of the inflated dataset would be N(K − 1)T . In standard applications, this would
result in more observations than most of today’s computers can handle. Therefore, not
all possible clones can be included in the inflated estimation sample, and a selection has
to be made. We propose to include all clones with no variation in the cutoff point (that
is, the clones corresponding to the sample used by the BUC estimator) and use a limited
number of clones with random variation in the cutoff points. The program feologit,

threshold is implemented accordingly, where the default is to include 10 clones of each
individual with randomly chosen cutoffs. The user can change the number of additional
clones by using the option clones(). The process of randomly selecting cutoff points
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can be influenced by the option seed(#). With replicability of results in mind, the
feologit command has been programmed so that running the BUC-τ estimator twice
leads to the same results. This should not deflect from the fact that cutoff points are
selected randomly.

3 The feologit estimation command

3.1 Syntax

The command feologit is called with the following syntax:

feologit depvar indepvars
[
if
] [

in
] [

weight
]
, group(varname)

[
thresholds

clones(#) keepsample seed(#) cluster(clustvar) or otheropts
]

where depvar is an ordered categorical variable. Time-series operators are not allowed.
fweights, iweights, and pweights are allowed (see [U] 11.1.6 weight), but they are
interpreted to apply to groups as a whole, not to individual observations.

3.2 Description

feologit fits fixed-effects ordered logit models using the BUC estimator of Baetschmann,
Staub, and Winkelmann (2015). It does so by replacing each observation in the dataset
by K − 1 copies of the observation (where K is the number of categories of the or-
dered dependent variable) and then applying the CML estimator clogit, clustering the
standard errors at the level of the original panel unit. After estimation, the dataset is
returned to its original form (unless the option keepsample is specified). With the op-
tion threshold, feologit applies the BUC-τ estimator of Baetschmann (2012), which
assumes that thresholds are constant across panel units.

3.3 Options

group(varname) is required if xtset panelvar has not been specified; it specifies an
identifier variable (numeric or string) for the matched groups. If a panel identifier
has been set with xtset, the option group(varname) may be omitted; in this case,
feologit will use the panel identifier and provide a warning. strata(varname) is
a synonym for group().

thresholds calls the BUC-τ estimator, which includes estimates of the thresholds.

clones(#) specifies the number of clones used in the estimation when thresholds has
been specified. The default is clones(10). A clone is a copy of all observations of
a panel unit.
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keepsample specifies that the estimation sample be kept. The estimation sample in-
cludes the original data as well as additional observations consisting of copies of the
original data. The option keepsample generates the following new variables:

dkdepvar, the dichotomized dependent variable used in the clogit estimation step;

dkthreshold, a variable that indicates at which cutoff point each observation of the
ordered dependent variable was dichotomized (to result in dkdepvar);

bucsample, a binary variable that indicates whether the observation forms part of
the estimation sample of the BUC estimator—this variable exhibits variation only
if the option thresholds has been specified;

clonegroup, an integer-valued variable that identifies observations corresponding to
each panel unit and clone in the estimation sample; and

clone, a binary variable that indicates whether an observation is part of the original
sample (clone = 0) or a copy (clone = 1).

For instance, after BUC-τ estimation of feologit with the option keepsample, the
corresponding BUC estimates can be obtained by issuing the following command:

clogit dkdepvar indepvars if bucsample==1, group(clonegroup) cluster(clustvar)

where indepvars and clustvar are the variables that were used in the BUC-τ estima-
tion.

seed(#) specifies the pseudo-random-number seed used in the estimation when the
option thresholds has been specified. The default is seed(79846512).

cluster(clustvar) sets the identifier variable for clustering standard errors. Standard
errors are always clustered; specifying this option overrides the default clustering
variable, which is the group identifier.

or reports the estimated coefficients transformed to odds ratios, that is, exp(b) rather
than b. Standard errors and confidence intervals are similarly transformed.

otheropts; see help feologit.
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3.4 Stored results

Many of the results stored in e() are similar to clogit or ologit. Stored results specific
to feologit are

Scalars
e(N) number of observations including observations of clones
e(N true) number of authentic observations (without observations of clones)
e(N group) number of panel units specified by group()
e(cut1) rescaling factor used for predict and margins postestimation com-

mands (if option thresholds is specified; see sections 3.5 and 4.4
for details)

e(clones) number of clones (additional to dichotomized sample)
e(seed) seed for random-number generator

Macros
e(estopt) estimation type option (basic or thresholds)
e(group) name of group() variable

3.5 Postestimation

The following postestimation commands are available after feologit:

• logitmarg calculates statistics of MEs from sample averages. logitmarg uses
a routine provided with the feologit installation. It uses sample averages to
calculate MEs (see section 4.3 for details). It provides standard errors using the
Delta method. The following options allow users to modify the reported results:

– outcome(outcome) displays estimated MEs only for the category selected by
outcome, which should be either one value of the dependent variable or an
indicator of the ordered category (#1, #2, etc.).

– dydx(varlist) displays estimated MEs only for the variables listed by varlist.

– eretstore stores estimates in e() instead of r(). Existing e() results will
be lost.

• predict creates a new variable containing linear predictions (option xb) or predic-
tions of probabilities (called using the same syntax as after ologit). Predictions
of probabilities are available only after estimation with the option thresholds.
Estimates of probabilities are calculated assuming all fixed effects are equal to
e(cut1) (see section 4.4 for details).

• margins estimates margins of response for probabilities and linear predictions.
Margins for probabilities are available only after estimation with the thresholds
option. Margins of response for probabilities are calculated assuming a value of
e(cut1) for all fixed effects (see section 4.4 for details).

• test and testnl conduct Wald tests of simple and composite linear hypotheses
and tests of nonlinear hypotheses. These commands cannot be used on estimates
of the second threshold, which is constrained (τ2 = 0). The second threshold τ2
is the first finite threshold and is called /cut1 in the estimation output.
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4 Interpretation

In empirical applications, the interest usually lies in the effect of the covariates x on the
dependent variable, and the interpretation of β is of primary interest. However, because
the ordered logit model is a nonlinear model, this parameter does not reflect MEs of x
on the ordered dependent variable y. There exist different possibilities of interpreting
the regression results, some of which are discussed below.

4.1 Direction and compensating variation

The sign of β indicates the direction in which an increase of x influences the cumulative
distribution of the dependent variable. If βl > 0, an increase of the regressor xl will lead
to an unambiguous decrease in the probability of the lowest category Pr(yit ≥ 1|xit, αi)
and an increase in the probability of the highest category Pr(yit ≥ K|xit, αi). Moreover,
the single crossing property of the ordered logit model implies that there will be exactly
one change from the probabilities of lower categories, which decrease, to probabilities of
higher categories, which increase (see Winkelmann and Boes [2010]). Without knowing
the thresholds, one cannot determine at which category this switch from decrease to
increase will take place.

The β can be interpreted as MEs of x on the latent variable y∗. Because the interest
often lies on the ordered dependent variable y rather than the latent y∗, this interpre-
tation is rarely used. Another simple interpretation of β with wider application is to
compute the compensating variation between variables, for example, the change in two
regressors such that the latent variable, and therefore the ordered dependent variable,
remains unchanged. The compensating variation of two variables is given by the ratio
of the corresponding β: an increase of xl by 1 has the same effect as an increase of xr

by βl/βr.

4.2 Odds ratio

The effect size in logit models is often interpreted using odds, which refers to the ratio
between the probability of a certain event and the complementary probability. In the
case of ordered logit, the odds of individual i in period t having a yit above category k
relative to below or equal to k is

Odds(k,xit) ≡
Pr(yit > k|xit)

Pr(yit ≤ k|xit)
= exp(x′

itβ − τik)

The odds are independent of the fixed effects but still depend on the thresholds. How-
ever, the change in the odds if the lth regressor is modified solely depends on β and the
shift of the regressor:

Odds ratio(k,∆xitl) ≡
Odds(k,xit +∆xitl)

Odds(k,xit)
= exp(∆x′

itlβ)
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Therefore, an increase of xl by 1 increases the odds ratio by exp(βl) for all categories
except the first one, everything else being equal. Or in other words, a unit increase in xl

changes the odds by about βl × 100 percent (for small βl) or by exactly {exp(βl)− 1}×
100 percent. The option or displays the results as exp(β) as in the standard commands
for logit models.

4.3 Marginal effects

In empirical applications, the interest often lies in the marginal probability effects, that
is, the change in the probabilities of observing yit = k if a covariate l is changed by a
small amount:

MEitkl ≡
∂ Pr(yit = k|xit, αi)

∂xitl
=

∂ Pr(yit ≤ k|xit, αi)

∂xitl
− ∂ Pr(yit ≤ k − 1|xit, αi)

∂xitl

Because the probabilities depend on the thresholds and the individual fixed effects,
any marginal probability effects will generally also depend on these parameters. And
because they are not estimated, estimates for MEs cannot generally be obtained either.
For the ordered logit model, the ME has the specific form

MEitkl = [Λ(τik+1−xit−αi) {1− Λ(τik+1−xit−αi)}
−Λ(τik−xit−αi) {1− Λ(τik−xit−αi)}]βl

= [Pr(yit ≤ k|xit, αi) {1− Pr(yit ≤ k|xit, αi)}
−Pr(yit ≤ k − 1|xit, αi) {1− Pr(yit ≤ k − 1|xit, αi)}]βl (7)

Thus, we see immediately that the relative size of the MEs of two covariates l and r is
equal to the relative size of their β coefficients,

MEitkl/MEitkr = βl/βr

a quantity that can readily be estimated from β̂l/β̂r.

Moreover, from the second equality in (7), it is clear that for given probabilities
of the dependent variable yit, the ME is just a function of βl and straightforward to
calculate with an estimate β̂l. One can therefore calculate MEs for any interesting
probabilities of the dependent variable. An obvious choice for such probabilities is the
sample proportions. We called this the ME at the average, and it can be computed by
the feologit postestimation command logitmarg for each regressor and each possible
outcome category. Then, an estimate of the ME of regressor l for category k is

MEkl =
{
d
k+1

(
1− d

k+1
)
− d

k
(
1− d

k
)}

β̂l

where d
k
is the sample average of dkit. Standard errors for MEkl can be obtained via the

Delta method. Depending on whether one is interested in MEkl as an estimate of the
ME at the sample average or as an estimate of the ME at the population mean, standard
errors need to account for sampling variation from estimation of only β or, in addition,
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from estimation in d
k+1

and d
k
. The command logitmarg provides standard errors for

the ME at the sample average.

This is a simple and arguably useful object of interest. However, it is different from
the average ME, E(MEitkl), which is infeasible. It is also different from the ME at the
average of the regressors, defined as (7) evaluated at x =

∑
i

∑
t xit/(NT ), which is also

infeasible. Both of these more widely used objects of interest depend on the unavailable
individual thresholds and fixed effects [see the expression after the first equality of (7)],
while the ME at the average of the dependent variable that we propose circumvents this
problem by focusing instead on the expression after the second equality of (7).

Finally, another potentially useful quantity that is identified and easily estimable
is the average semielasticity of the continuation probability at category k with respect
to regressor l. The identification and estimation of the average semielasticity in binary
fixed-effects logit models was demonstrated by Kitazawa (2012) (see also Santos Silva
and Kemp [2016]), and here we generalize it to the ordered case:

E

(
∂ lnP (yit ≥ k|xit, αi)

∂xitl

)
= βl

(
1− d

k
)

4.4 Thresholds

The assumption of constant thresholds for all individuals used by the BUC-τ estimator
allows for additional interpretations. A model with constant thresholds can be fit with
feologit by using the option threshold. For the interpretations that follow, we change
our conceptual perspective: up to this point, all interpretations were cast in terms of
probabilities. The εit was treated as a random variable. Now, we keep εit fixed, and
a change of a regressor leads to a deterministic effect of either pushing the ordered
variable to a different category or staying in the same category.

If the spaces between adjacent thresholds are almost equal, a change of the regressors
has similar effects independently of the specific category. This does not apply, however,
for the tails of the distribution, that is, the lowest and the highest category. If the
spaces are unequal, a change of a regressor has a smaller effect for categories where the
thresholds are far apart.

Regarding the effects of covariates, even a marginal change can lead to a switch
of category because we do not know the exact value of the latent variable. However,
because an estimate of the differences between the thresholds is available, we can also
compute the change in the regressors, which surely leads to a switch of category. For
example, a person in the third category will surely rise up to the next higher category
if xitl increases by (τ3 − τ4)/βl, everything else being equal.

When both the thresholds and β are known, the only unknown parameter in the
formula for the ME (7) is αi. For such situations in fixed-effects models, Stata’s margins
postestimation command assumes αi = 0 for all i. This is the case, for instance, when
using margins after xtlogit with the option fe (the binary fixed-effects logit).
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If αi 6= 0 for all i, the object estimated assuming αi = 0 for all i will, in general,
not be consistent for the average ME. Nevertheless, we have equipped feologit with
a similar postestimation capability. When margins is called after feologit with the
option thresholds, an average ME is computed assuming that αi is constant across
individuals. Because of the underidentification of τik and αi, and the normalization
τ2 = 0, calculating probabilities at αi = 0 for all i is often a particularly poor choice.
Therefore, we use αi = α̃ for all i instead, which is defined as the estimate of the
constant in a binary (cross-sectional) logit of the dichotomized dependent variable at

the first cutoff (d2it) with a single regressor zit ≡ xitβ̂ whose coefficient is restricted to 1:

α̃ = max
a

∑
i

∑
t

d2it log Λ(a+ zit) +
(
1− d2it

)
{1− Λ(a+ zit)}

with first-order condition

d
2
= (NT )−1

∑
i

∑
t

Λ(α̃+ zit)

The estimate α̃ is stored in e(cut1) after feologit with the option thresholds. A
potentially better estimate for α̃ could be obtained by using all dk instead of basing
it only on d2. However, our intention here is to provide such an estimate only as a
suggestive result, and we caution against relying on these MEs (see also, for example,
Santos Silva and Kemp [2016], who argue persuasively against using MEs based on
αi=0).

5 Application: Effect of motherhood on life satisfaction

To illustrate the empirical application of the feologit command, we analyze the effect
of the birth of the first child on his or her mother’s life satisfaction using the SOEP, a
large representative household survey (Wagner, Frick, and Schupp 2007). The data were
collected yearly between 1984 and 2009, and it is therefore possible to follow a person up
to 26 years. The sample includes women between the ages of 20 and 60 who either were
mothers or became mothers during the observation period. The application is based
on data from Baetschmann, Staub, and Studer (2016), where additional information
about data and estimation of causal effects can be found.2 The dependent variable is
life satisfaction, an ordinal variable that ranges from 0 (completely dissatisfied) to 10
(completely satisfied). Below, we tabulate its distribution.

2. While all results shown below were obtained using the original SOEP data, the accompanying
dataset (bbsw.dta) (Baetschmann, Staub, and Studer 2016) has been modified by artificially adding
errors for anonymization purposes and reducing it slightly so that permission could be obtained
for it to be shared publicly without restrictions. Consequently, results using the dataset differ
somewhat from the ones presented here. For reference, the results obtained with the dataset can
be obtained by running the application bbsw.do file. SOEP data are publicly available—access
can be requested through DIW Berlin.
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. tabulate lifesat

life satisfaction Freq. Percent Cum.

0. Completely dissatisfied 0 650 0.52 0.52
1 498 0.40 0.92
2 1,485 1.19 2.11
3 3,332 2.67 4.79
4 4,657 3.74 8.53
5 16,464 13.22 21.74
6 13,979 11.22 32.97
7 26,793 21.51 54.48
8 36,127 29.00 83.48
9 13,669 10.97 94.45

10. Completely satisfied 10 6,908 5.55 100.00

Total 124,562 100.00

About two-thirds of the responses lie in the upper part of the distribution (seven or
higher). The modal answer is category 8 with a proportion of around 29%. We want
to analyze the effect of the first child on a mother’s life satisfaction and are especially
interested in the evolution of a woman’s general life satisfaction in the first years after
the birth of her first child. Our specification also includes a small set of additional
regressors: age, logarithm of household income, and a dummy indicating whether the
respondent is working. While controlling for potentially endogenous factors such as
income and labor-force participation can lead to biases in the estimates of the effects of
interest, we include these variables here only to illustrate the regression output of the
feologit command.

. describe lifesat kidage01 age lhinc work

storage display value
variable name type format label variable label

lifesat byte %31.0g p1110109 life satisfaction
kidage01 byte %9.0g age of first child
age byte %9.0g age
lhinc float %9.0g log of monthly houshold income
work byte %8.0g worked last week

To estimate the effect of having the first child on life satisfaction and the following
dynamics, we include five dummy variables, representing the age of the first child in
years. For example, the variable kidage01 2 is equal to 1 when the first child’s age is 2
and 0 otherwise. Such a flexible form approach is common in the literature on adaptation
to life events (for example, Clark et al. [2008]). Women who are happier might be more
likely to get married and have children (Stutzer and Frey 2006). To control for this
selection into motherhood, we want to control for time-invariant characteristics like a
genetic disposition to happiness. And because the dependent variable is ordered, we
use a fixed-effects ordered logit model fit with the BUC estimator. First, we declare the
panel variable with the xtset command,

. xtset idpers
panel variable: idpers (unbalanced)
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and then fit the model with the BUC estimator using feologit. We issued the following
command:

. feologit lifesat kidage01_0-kidage01_4 age lhinc work
note: group() not specified; assuming group(idpers) from panel identifier

note: multiple positive outcomes within groups encountered.

Iteration 0: log conditional likelihood = -172931.52
Iteration 1: log conditional likelihood = -170560.88
Iteration 2: log conditional likelihood = -170558.47
Iteration 3: log conditional likelihood = -170558.47

Fixed-effects ordered logistic regression

N. of obs. (inc. copies) = 469318
N. of observations = 115257
N. of panel units = 11247
Wald chi2(8) = 1356.60
Prob > chi2 = 0.0000

Log conditional likelihood = -170558.47 Pseudo R2 = 0.0222
(Std. Err. adjusted for 11,247 clusters in idpers)

Robust
lifesat Coef. Std. Err. z P>|z| [95% Conf. Interval]

kidage01_0 .7795942 .0526895 14.80 0.000 .6763246 .8828637
kidage01_1 .6458431 .0514869 12.54 0.000 .5449306 .7467555
kidage01_2 .2123843 .0488413 4.35 0.000 .1166571 .3081115
kidage01_3 .1570779 .0457228 3.44 0.001 .0674628 .246693
kidage01_4 .0118047 .0426905 0.28 0.782 -.0718671 .0954765

age -.059859 .0022636 -26.44 0.000 -.0642956 -.0554224
lhinc .5426902 .0262043 20.71 0.000 .4913307 .5940497
work .2002279 .0212617 9.42 0.000 .1585558 .2419

The output shows that the algorithm for maximizing the log conditional likelihood
converged after three steps. For fitting the model parameters, only individuals (panel
units) who have variation in their dependent variables are informative. Individuals who
are observed only once or have always the same life satisfaction scores over time are
excluded by the program (because their LL contribution is zero). This condition is met
by 11,247 individuals, which results in 115,257 observations. On average, people in the
estimation sample are therefore observed about 10 times. The ordered dependent vari-
able has 11 categories, so 10 different dichotomizations are possible. However, because
not all dichotomizations lead to copies with variation in the binary dependent variable,
we end up with 469,318 copies that contribute to the estimation procedure. Because the
copies are not independent of each other, feologit calculates cluster-adjusted standard
errors at the individual level (11,247 individuals).

The Wald test indicates that all eight included variables are jointly statistically sig-
nificant. Regarding the effect of having the first child, the effect is highest in the year
of birth (coefficient on kidage01 0). Thereafter, the effect decreases and reaches a
nonsignificant level after four years. Age has a negative effect after controlling for time-
invariant characteristics and the other variables in the model. As expected, household
income and working have a positive effect on life satisfaction. The compensating varia-
tion between work and log household income is about 0.37, meaning that log household
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income has to increase by 0.37 to compensate for not working. This is equivalent to say-
ing that household income has to increase by 45% [exp(0.37)−1] to offset a nonworking
status.

Odds ratios for interpreting the effect sizes can be obtained by using the option or.
Below are the code and an excerpt of the output:

. feologit, or

(output omitted )

Robust
lifesat Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

kidage01_0 2.180587 .1148941 14.80 0.000 1.966636 2.417814
kidage01_1 1.907595 .0982161 12.54 0.000 1.724489 2.110143
kidage01_2 1.236623 .0603983 4.35 0.000 1.123734 1.360853
kidage01_3 1.170087 .0534997 3.44 0.001 1.06979 1.279786
kidage01_4 1.011875 .0431974 0.28 0.782 .9306546 1.100183

age .9418973 .0021321 -26.44 0.000 .9377277 .9460854
lhinc 1.720629 .0450879 20.71 0.000 1.63449 1.811309
work 1.221681 .025975 9.42 0.000 1.171817 1.273667

Having the first child increases the odds ratio by about 118% in the year of birth,
about 91% in the first, about 24% in the second, and about 17% in the third year
thereafter. In the fourth year, the effect is essentially no longer present.

Marginal effects at the average can be obtained by using the postestimation com-
mand logitmarg after fitting the model. They are computed using the relative frequen-
cies of the corresponding categories in the estimation sample. Below are the code and
the output. We specified the option dydx(kidage01 0) to limit the output to the MEs
of the year of birth.

. logitmarg, dydx(kidage01_0)

Marginal effects at the average N. of observations= 115257
N. of panel units = 11247

Margin Std. Err. z P>|z| [95% Conf. Interval]

1 -.0039435 .0002665 -14.80 0.000 -.0044659 -.0034211
2 -.0031271 .0002113 -14.80 0.000 -.0035414 -.0027129
3 -.0090451 .0006113 -14.80 0.000 -.0102433 -.007847
4 -.0196532 .0013283 -14.80 0.000 -.0222566 -.0170498
5 -.0253752 .001715 -14.80 0.000 -.0287365 -.0220139
6 -.0718074 .0048532 -14.80 0.000 -.0813194 -.0622954
7 -.0401357 .0027126 -14.80 0.000 -.0454523 -.0348191
8 -.0197687 .0013361 -14.80 0.000 -.0223874 -.0171501
9 .0881895 .0059604 14.80 0.000 .0765074 .0998716

10 .0661833 .0044731 14.80 0.000 .0574163 .0749503
11 .0384832 .0026009 14.80 0.000 .0333855 .0435809

Note that logitmarg enumerates categories starting at 1 and ignores the actual
(arbitrary) labels of the dependent variable, which in our case starts at 0. Because
having a child has a positive effect on life satisfaction in the first year, the marginal



G. Baetschmann, A. Ballantyne, K. E. Staub, R. Winkelmann 269

probability effects at the average are negative for the lower categories and positive for the
ninth and higher categories. For example, in the first year having a child decreases the
probability of falling into the sixth category by 7.2% points and increases the probability
of having the highest rating by 3.8% points for this average person, everything else being
equal. The effects for the lowest categories are small because only a few people have
such a low life-satisfaction status.

Estimating the thresholds is possible by using the option thresholds, which calls the
BUC-τ estimator. This requires the assumption that the spacing between the thresholds
is the same for all individuals. Below is the output:

. feologit lifesat kidage01_0-kidage01_4 age lhinc work, group(idpers) threshold

note: multiple positive outcomes within groups encountered.

Iteration 0: log conditional likelihood = -335358.34
Iteration 1: log conditional likelihood = -317080.65
Iteration 2: log conditional likelihood = -316611.97
Iteration 3: log conditional likelihood = -316611.28
Iteration 4: log conditional likelihood = -316611.28

Fixed-effects ordered logistic regression

N. of obs. (inc. copies) = 1544471
N. of observations = 116665
N. of panel units = 11725
Wald chi2(17) = 33921.94
Prob > chi2 = 0.0000

Log conditional likelihood = -316611.28 Pseudo R2 = 0.5250
(Std. Err. adjusted for 11,725 clusters in idpers)

Robust
lifesat Coef. Std. Err. z P>|z| [95% Conf. Interval]

kidage01_0 .7835162 .0537423 14.58 0.000 .6781832 .8888491
kidage01_1 .6396636 .052942 12.08 0.000 .5358992 .743428
kidage01_2 .2046826 .0501304 4.08 0.000 .1064288 .3029365
kidage01_3 .1624746 .047537 3.42 0.001 .0693037 .2556455
kidage01_4 .0107345 .0432988 0.25 0.804 -.0741297 .0955986

age -.0578395 .002264 -25.55 0.000 -.0622769 -.0534021
lhinc .5471535 .0269294 20.32 0.000 .4943729 .5999342
work .200715 .021935 9.15 0.000 .1577232 .2437068

/cut1 0 (constrained)
/cut2 .7284609 .0615201 .6078836 .8490381
/cut3 1.637104 .0677637 1.504289 1.769918
/cut4 2.666144 .0709232 2.527137 2.805151
/cut5 3.424063 .0726216 3.281727 3.566399
/cut6 4.872104 .0734364 4.728172 5.016037
/cut7 5.696417 .0749376 5.549542 5.843292
/cut8 7.036473 .0766951 6.886153 7.186792
/cut9 9.097256 .0807096 8.939068 9.255444

/cut10 10.65767 .0872651 10.48663 10.8287

In contrast with the procedure without thresholds, the cutoff point within a like-
lihood contribution (clone) can change. Therefore, even when the ordered dependent
variable is constant, the resulting dichotomized dependent variable with different cutoff
points can vary. This increases the number of individuals in the estimation sample
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slightly to 11,725 and the number of observations to 116,665. The estimator includes all
contributions of the BUC estimator plus 10 copies of each individual with random vari-
ation in the cutoff point. Therefore, the number of included copies increases noticeably
to over 1.5 million.

The regression coefficient β has the same interpretation as before. One can also
display the odds ratios. From the output, we see that the exact estimates changed
only slightly. Because life satisfaction can take 11 different values and the first finite
threshold /cut1 (corresponding to τ2) is normalized to zero, the output shows estimates
for the 2nd to the 10th threshold. Careful inspection of the spaces shows that there
is a moderate tendency that differences increase toward the top. Where the difference
between the first and second, and second and third, is 0.728 and 0.909, respectively, the
two spaces at the upper end are 2.06 and 1.56. This implies that changes of regressors
have a larger effect on the observed ordered dependent variable for unhappy individuals
compared with happy individuals.

The spaces range from 0.73 to 2.06, where the second smallest difference is 0.76. The
size of the MEs of the different regressors are rather small compared with these spaces.
Except for the unhappiest people (lowest category), having a child can never increase
life satisfaction by more than one point, everything else being equal. The same is true
for doubling the income [exp(0.547) = 1.73]. Regarding age, for a person with a life
satisfaction score of 9, 26 years need to pass for her to surely change to the next lower
category [(10.35− 8.91)/0.057].

The BUC and BUC-τ estimator are both consistent under the additional assump-
tion of constant thresholds. Therefore, we can test this assumption in the form of a
generalized Hausman specification test by comparing the two estimates. If they are sta-
tistically different, we can reject the null hypothesis of constant thresholds.3 There are
different possibilities to implement such a test in Stata. The most obvious way would
be to use the command suest. Using this command requires fitting the model without
clustered standard errors and, in a second step, computing a joint covariance matrix of
both estimators adjusting for clusters. However, because computing the BUC estimator
without clusters can be misleading and adjusting them after using clogit can lead to
error messages if the group variable is not properly nested within the cluster variable,
we decided to work with interaction terms. In a first step, the command feologit,

threshold with the additional option keepsample is used:

. quietly: feologit lifesat kidage01_0-kidage01_4 age lhinc work, group(idpers)
> threshold keep

The option keepsample, here shortened to keep, keeps the inflated dataset of clones
that is used to compute the BUC-τ estimator after the estimation. In addition, the
dichotomized dependent variable is stored under dkdepvar, the corresponding cutoff
point under dkthreshold, and the variable bucsample indicates whether the cutoff
varies within the clone (bucsample = 0) or not (bucsample = 1). Observations with
bucsample = 1 constitute the sample of the BUC estimator. The remaining observations

3. The precision of the test might be improved by increasing the number of clones used in estimation.
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are primarily used to estimate the thresholds but contribute to the estimates of β,
too. Under the null hypothesis of constant thresholds, both samples (bucsample = 0
and bucsample = 1) can be used to estimate β. Statistical differences between the
two estimates indicate that the thresholds are not constant. Thus, after having used
feologit with the options thresholds and keepsample, we can implement this test by
interacting the variable bucsample with all regressors and fitting the model with clogit

while grouping on the clone variable and clustering on the individual level. Finally, we
test whether the differences of the interaction terms are jointly equal to zero.

As an auxiliary step, we first use a small loop to create the interaction variables
(prefixed tau ) and store them in the local macro interact:

. local interact=""

. foreach i of var kidage01_0-kidage01_4 age lhinc work {
2. quietly: generate tau_`i´ =`i´*(bucsample==0)
3. local interact="`interact´ tau_`i´"
4. }
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We then fit the model with interactions using the clogit command, grouping on
the clone variable and clustering on the individual level:

. clogit dkdepvar kidage01_0-kidage01_4 age lhinc work `interact´ i.dkthreshold,
> group(clonegroup) cluster(idpers)
note: multiple positive outcomes within groups encountered.
note: 132,242 groups (827,909 obs) dropped because of all positive or

all negative outcomes.

Iteration 0: log pseudolikelihood = -335337.34
Iteration 1: log pseudolikelihood = -317228.3
Iteration 2: log pseudolikelihood = -316599
Iteration 3: log pseudolikelihood = -316594.58
Iteration 4: log pseudolikelihood = -316594.58

Conditional (fixed-effects) logistic regression

Number of obs = 1,544,470
Wald chi2(25) = 34242.88
Prob > chi2 = 0.0000

Log pseudolikelihood = -316594.58 Pseudo R2 = 0.5251

(Std. Err. adjusted for 11,725 clusters in idpers)

Robust
dkdepvar Coef. Std. Err. z P>|z| [95% Conf. Interval]

kidage01_0 .7795942 .0526894 14.80 0.000 .6763248 .8828635
kidage01_1 .6458431 .0514868 12.54 0.000 .5449308 .7467553
kidage01_2 .2123843 .0488412 4.35 0.000 .1166573 .3081113
kidage01_3 .1570779 .0457228 3.44 0.001 .0674629 .2466928
kidage01_4 .0118047 .0426904 0.28 0.782 -.0718669 .0954764

age -.059859 .0022636 -26.44 0.000 -.0642956 -.0554225
lhinc .5426902 .0262043 20.71 0.000 .4913307 .5940496
work .2002279 .0212616 9.42 0.000 .1585559 .2418999

tau_kidage01_0 .008167 .0306995 0.27 0.790 -.052003 .068337
tau_kidage01_1 -.013622 .029474 -0.46 0.644 -.07139 .0441459
tau_kidage01_2 -.0168844 .0268302 -0.63 0.529 -.0694707 .0357018
tau_kidage01_3 .0119503 .0251759 0.47 0.635 -.0373935 .0612941
tau_kidage01_4 -.0023741 .024214 -0.10 0.922 -.0498327 .0450844

tau_age .0040727 .0008054 5.06 0.000 .0024942 .0056513
tau_lhinc .0093463 .0121449 0.77 0.442 -.0144573 .0331498
tau_work .0009298 .0102628 0.09 0.928 -.0191849 .0210444

dkthreshold
2 -.7305085 .061547 -11.87 0.000 -.8511384 -.6098786
3 -1.638868 .0678167 -24.17 0.000 -1.771786 -1.505949
4 -2.667425 .0709832 -37.58 0.000 -2.80655 -2.5283
5 -3.424848 .072681 -47.12 0.000 -3.567301 -3.282396
6 -4.871923 .0734845 -66.30 0.000 -5.01595 -4.727896
7 -5.695513 .0749785 -75.96 0.000 -5.842468 -5.548557
8 -7.034464 .0767388 -91.67 0.000 -7.184869 -6.884058
9 -9.093563 .0807186 -112.66 0.000 -9.251769 -8.935358

10 -10.65302 .0873042 -122.02 0.000 -10.82414 -10.48191
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As can be seen, the estimates of the noninteracted regressors are numerically equiv-
alent to the previous BUC estimates. The estimates of the interaction terms mirror the
differences between the BUC and the BUC-τ estimates but are not identical because the
thresholds adjust to the additional regressors. The differences are small, and most of
them are not individually significant. To formally test whether they are jointly different,
we can use Stata’s test command:

. test `interact´

( 1) [dkdepvar]tau_kidage01_0 = 0
( 2) [dkdepvar]tau_kidage01_1 = 0
( 3) [dkdepvar]tau_kidage01_2 = 0
( 4) [dkdepvar]tau_kidage01_3 = 0
( 5) [dkdepvar]tau_kidage01_4 = 0
( 6) [dkdepvar]tau_age = 0
( 7) [dkdepvar]tau_lhinc = 0
( 8) [dkdepvar]tau_work = 0

chi2( 8) = 39.13
Prob > chi2 = 0.0000

Despite the differences being small, the joint hypothesis that all these terms are
equal to zero can be rejected at the 0.1% level [χ2(8) = 39.13] because of the large
sample. Therefore, formally we reject the null hypothesis of constant thresholds and
should use the BUC instead of the BUC-τ estimator to interpret the results. However,
given that differences in the estimates in this case are so small, the thresholds might
still shed some light on the data-generating process but should not be overinterpreted.

6 Conclusion

In this article, we presented and discussed the BUC and BUC-τ estimators of the fixed-
effects ordered logit model and introduced a new community-contributed command that
implements these estimators in Stata, feologit.

BUC and BUC-τ both offer consistent estimates of the slope parameters β. In ad-
dition, BUC-τ obtains consistent estimates of the thresholds τ , under the slightly more
restrictive assumption that they do not vary between individuals. While the calculation
of average MEs is not possible with these estimators, useful identified objects of interest
include odds ratios, compensating variation, and other quantities. Of particular inter-
est is a particular ME at the average, which we proposed in this article and for which
a dedicated postestimation command is available with feologit. Finally, we also pre-
sented a new specification test that can be used to evaluate the assumption of constant
thresholds by comparing BUC and BUC-τ estimates and that can be easily implemented
with a few lines of code in Stata.



274 Fixed-effects ordered logit models

7 Acknowledgments

The authors thank Johannes Kunz for comments on an early version of this article.
Staub gratefully acknowledges financial support from the Australian Research Council
through grant DE170100644.

8 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 20-2

. net install st0596 (to install program files, if available)

. net get st0596 (to install ancillary files, if available)
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