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Self-assessed  health  (SAH)  is  often  used  in  health  econometric  models  as  the  key  explana-
tory  variable  or  as  a control  variable.  However,  there  is  evidence  questioning  its test-retest
reliability,  with  up  to  30%  of  individuals  changing  their  response.  Building  on  recent
advances  in  the  econometrics  of  misclassification,  we  develop  a way  to consistently
estimate  and account  for misclassification  in reported  SAH  by  using  data  from  a  large  repre-
sentative longitudinal  survey  where  SAH  was  elicited  twice.  From  this  we gain  new  insights
into the nature  of  SAH  misclassification  and  its potential  for  biasing  health  econometric  esti-
mates. The  results  from  applying  our  approach  to nonlinear  models  of long-term  mortality
and chronic  morbidities  reveal  that  there  is  substantial  heterogeneity  in  misclassification
patterns.  We  find  that  adjusting  for  misclassification  is  important  for estimating  the  impact
of SAH.  For  other  explanatory  variables  of interest,  we find  significant  but  generally  small
isreporting
easurement error
ultinomial regressor
iscrete and limited dependent variables
ubjective health
ortality

changes  to  their  estimates  when  SAH  misclassification  is ignored.
©  2021  Elsevier  B.V.  All  rights  reserved.
hronic conditions

. Introduction

Self-assessed health (SAH) is a ubiquitous measure in
he health economics literature and, more broadly, in social
cience research (Au and Johnston, 2014). It is often asked
s a simple question, “in general, how would you rate

our health?”, where respondents select from categories
uch as excellent, very good, good, fair or poor. SAH is
sed variously in econometric models as the outcome

∗ Corresponding author.
E-mail addresses: philip.clarke@ndph.ox.ac.uk (P.M. Clarke),

ennis.petrie@monash.edu (D.J. Petrie), kevin.staub@unimelb.edu.au
K.E. Staub).

https://doi.org/10.1016/j.jhealeco.2021.102463
167-6296/© 2021 Elsevier B.V. All rights reserved.
variable, as the key explanatory variable or as a control
variable to prevent health from confounding the effect of
interest. However, there is a large literature calling into
question the reliability of reported SAH, as up to 30% of
individuals change their response when re-asked about
their SAH (Crossley and Kennedy, 2002; Clarke and Ryan,
2006; Black et al., 2017a). This paper takes advantage of
recent econometric developments on misclassification and
information from a prominent longitudinal survey—the
Household, Income and Labour Dynamics in Australia
(HILDA) survey—to gain new insights into the nature of

misclassification in reported SAH and its potential for bias-
ing estimates of the effects of SAH and other explanatory
variables in health econometrics models. In particular,
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ur analysis uses data from the 2001 wave of HILDA,
hich records the same individual’s SAH responses in

wo different but similar questionnaires in the same wave
face-to-face or over-the-phone interview, and on a self-
ompletion questionnaire), and combines this information
ith longitudinal data on mortality and the development

f chronic health conditions 15 years later. We  develop a
ew likelihood-based nonlinear estimator which uses this

nformation to jointly estimate the misclassification in both
eported SAH measures as well as the effects of SAH on

ortality and morbidity.
Two independent misclassified measures of a categor-

cal variable, such as SAH, supplemented with data on an
utcome, such as mortality, can identify all the misclas-
ification probabilities and the effect of the variable on
he outcome (Hu, 2008, 2017). This can be done without
mposing virtually any restrictions on the misclassification
atterns, such as assuming that the probabilities of certain

orms of misclassification are zero, that certain misclas-
ification probabilities are larger than others, or that the
isclassification probabilities are the same for both SAH
easures. In our case, the flexibility of allowing that each
easure may  have differing levels of misclassification is

mportant because the mode with which the question was
sked is different.1 While infinitely many misclassification
atterns are compatible with the observed data on only
wo reported SAH measures,2 adding information about an
utcome affected by SAH such as mortality allows us to pin
own the misclassification probabilities. The reason is that
ach possible misclassification pattern implies a unique
istribution of SAH within each reporting group, so that the
verage outcome within each group provides the missing
nformation needed to reveal the misclassification pattern
resent in the reported SAH data. For instance, consider
a) the group of individuals reporting “excellent” health
ccording to the first measure and “very good” according
o the second, versus (b) the group responding “excellent”
n both. If the individuals in both groups are mainly in
excellent” health, then they should have similar mortal-
ty. But if the individuals in (a) are mainly in “very good”
ealth whereas those in (b) are mainly in “excellent” health,
hen the mortality of group (a) is likely to be different
o the mortality of (b). Thus, looking at these three vari-
bles jointly (the two reported SAH plus mortality) can
dentify all underlying misclassification probabilities. And,
onversely, because identifying misclassification is tan-

amount to knowing the underlying distribution of SAH
ithin each group, it also makes it possible to back out

he true impact of SAH on the outcome. In the next sec-

1 And, more generally, the misclassification probabilities may  vary
cross the measures due to the nature of priming questions. For exam-
le,  if the respondent had first been asked other questions about their
ealth conditions, this may  reduce the level of misclassification; or, if the
uestion came late in the survey when respondents may  be fatiguing and

osing concentration, this might increase the likelihood of misreporting
AH.
2 For example, it is not possible to distinguish the case of the first

eported SAH being severely misclassified and the second being almost
rror-free from the case of misclassification being equally severe for both
easures.

2
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tion (Section 2), we present a more detailed example of
this identification strategy, and in Section 3 we  show how
this formally generalises to a full econometric model which
can be richly parametrised in terms of covariates. However,
estimating such a model is not straightforward.

While Hu (2008) discusses a nonparametric estimator
for this setting, the implementation of that estimator is
non-trivial and its computation is prohibitive when, as in
our case, the model has many covariates, the potentially
misclassified variable (SAH) has many categories, and the
sample size is large.3 Therefore, we  develop a more eas-
ily implementable parametric likelihood-based estimator.
An important advantage of our estimator is that the effects
of categorical SAH are specified by including dummy  vari-
ables for each category of SAH in the outcome model, the
standard way SAH is included as a categorical regressors in
the health economics literature. Our approach also lends
itself easily to specifications with interaction effects where
the impact of unobserved SAH differs depending on other
individual characteristics. Such specifications, common in
applied work to investigate the heterogeneity of the effect
of SAH, have received little attention in the misclassifica-
tion literature so far. Another advantage is that, because the
model has a finite-mixture representation, our estimation
approach is a flexible parametric specification estimated
via a standard expectation-maximisation (EM) algorithm,
which offers fast and reliable computation. The flexibility
and richness of our model, where we  allow unrestricted
patterns of misclassification that depend on all covariates,
means that the likelihood is complex and difficult to max-
imise. The EM algorithm provides the key to a simpler and
more direct path to the solution. By holding misclassifica-
tion constant in the maximisation step, the resulting log
likelihood is substantially simpler: it becomes additively
separable, so that components can quickly be maximised
separately. Moreover, because it is likelihood-based, our
estimator can be easily adapted to encompass several out-
comes jointly (such as, in our case, mortality and chronic
morbidity) and be further extended to consider the pensal-
isation of misclassification parameters to improve stability
and efficiency. Section 4 provides simulation evidence on
our estimators finite sample performance.

The focus of this paper is the application of our pro-
posed estimator to the HILDA data with the aim of making
two  key contributions to the health economics literature.
First, we  go beyond the current literature which only docu-
ments observed differences in multiple reported measures
of SAH, typically by regressing an indicator of conflict-
ing SAH answers on a set of explanatory variables (Black
et al., 2017a). As an example of the difficulties associated

with interpreting some of the estimates produced with
this method, consider for instance the finding that indi-
viduals with lower education are more prone to giving

3 To the best of our knowledge, to date there is no paper that uses this
estimator in a setting comparable to ours, with many covariates and a
misclassified variable that has many categories. The illustrative applica-
tion  in Hu (2008) is an order of magnitude smaller than ours in terms of
sample size (N = 1688), has a only five covariates, and the specification
of the outcome model is restricted by assuming that the key categorical
variable has a linear effect on the outcome.
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excellent health are truthfully reporting their SAH. We  also
document that there is less measurement error in the SAH
question elicited by face-to-face interviews than in the one

4 Black et al. (2017b) find, using HILDA data, that, compared to work-
ers, individuals not working were more likely to reclassify themselves as
having a disability after they were asked their work status. This suggests
that the wider context in which people are asked questions about their
self-assessed health may  also impact on their propensity to misclassify.
. Chen, P.M. Clarke, D.J. Petrie et al. 

onflicting SAH answers when asked twice. It is gener-
lly not possible to conclude from such a finding which
f the two reported SAH questions is answered more accu-
ately, and which types of specific mistakes are made with
hich frequency. It is not even possible to conclude that

ndividuals with lower education tend to have generally
igher rates of misclassification than higher education indi-
iduals, since it could be, for instance, that face-to-face
AH from low education individuals is much less reliable,
hile self-completed SAH from low education individuals

s somewhat more reliable. In contrast to these reduced-
orm approaches, our new framework provides estimates
f the complete set of probabilities of misreporting each
ategory of each measure by covariates such as education,
ncome, etc. By linking differences in SAH to underly-
ng misclassification probabilities, it makes it possible to
ddress behavioural questions about the extent, patterns
nd heterogeneity of individuals’ responses. It also makes it
ossible to assess questions pertaining to survey method-
logy, such as the type and incidence of response errors
ssociated with each of the two survey instruments—face-
o-face interview and self-completion questionnaire.

Second, our results make it possible to assess how biased
onventional estimates of the effects of reported SAH are
y misclassification. In our approach, the outcome model
akes the form of a standard nonlinear model, such as a logit

odel, and can be specified not just in terms of SAH but also
y including a vector of covariates. This makes it straight-
orward to compare our estimates of the outcome model
o naïve estimates which ignore misclassification—that is,
imple logit models of mortality and morbidity that include
ither the first or second reported SAH measure, as widely
ncountered in the health economics literature. Our esti-
ator provides a way to adjust for misclassification in

eported SAH when estimating the effects of SAH on mor-
ality and morbidity in such models. As mentioned above,
nce the misclassification probabilities are identified, the
ffect of SAH on, say, mortality can be backed out because,
or each reported SAH group, the group’s distribution of
AH can be inferred and linked to the group’s mortality.
imilarly, our approach also makes it possible to assess
ow biases stemming from misclassification of reported
AH affect the estimates of other regressors of interest. Such
pillover of the bias in reported SAH to other regressors can
ccur if the latter are correlated to SAH. Intuitively, one can
nderstand the use of reported SAH as introducing a type
f omitted variable problem: part of SAH is missing in the
eported measure. If covariates are correlated to SAH (and
hus also to the omitted part of SAH), this will bias the coef-
cients on these other variables. And due to the bias on the
ffect of SAH itself, even the non-omitted part is not being
djusted for appropriately, which will also further spill over
o these correlated variables. Bago d’Uva et al. (2011) also
ook at such spillovers, albeit for a different outcome and

ith an approach based on vignettes.
Understanding and dealing with measurement errors

n SAH has been and still is an active area of research

ithin health econometrics. While Greene et al. (2018)

nd Brown et al. (2018) adjust for untruthful reporting in
iscrete dependent variable models, our focus lies in the
ase of discrete SAH taking the role of a regressor. In mod-

3
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els seeking to explain labour supply decisions a key focus
has been on individuals misclassifying (under-reporting)
their SAH to justify not working (Bound, 1991; Currie and
Madrian, 1999; Lindeboom and Kerkhofs, 2009; Black et al.,
2017b).4 This can be problematic in these models because
it can upwardly bias the estimated coefficient on SAH, but
what is less commonly noted is that other reasons why
SAH is misclassified will cause bias in the other direction
(Bound, 1991). In the current paper, we  consider ‘to justify
not working’ as one of many reasons which may  explain an
individual’s propensity (or probability) to misclassify their
SAH. Our estimator can fully account for misclassification
related to work status or any other factor, as long as the
respondents are not misclassifying SAH to justify the out-
come we  use for identification (in our case mortality or the
onset of chronic condition 15 years in the future). Our paper
also contributes to the literature which investigates the
association between “objective” and self-assessed health
measures (Bound, 1991; Mossey and Shapiro, 1982; Butler
et al., 1987; Baker et al., 2004; Doiron et al., 2015). We
consider substantially longer-term associations between
SAH and mortality (and morbidity) than in these studies
(15 years vs 3–6 years), and we  adjust the association by
accounting for misclassification in reported SAH. The most
closely related studies to ours are Crossley and Kennedy
(2002), Clarke and Ryan (2006) and Black et al. (2017a),
which also consider the change in an individual’s response
when SAH is asked twice; however, none of these papers
estimates the impact of misclassification when reported
SAH is used as a regressor, nor do they study the underlying
misclassification probabilities.

Our main results are discussed in Sections 5 and 6.
In Section 5, we  document the empirical salience of
the problem of differing answers to repeated SAH ques-
tions throughout the HILDA survey, which motivates
our research, and we replicate the previous literature’s
reduced-form results by regressing these differences in
SAH responses on covariates. As discussed, it is difficult
to link such results to the underlying misclassification.
Section 6 presents the results using our estimator on the
HILDA data, which overcomes these problems. We  find
strong evidence for the presence of misclassification and
for heterogeneity in misreporting behaviour across differ-
ent population subgroups, such as males vs females and
low vs high income earners. For instance, we  find that men
who  are in excellent health almost never fail to report
this in interviews, but not all men  who  report being in
But  even with the results from Black et al. (2017b), we do not know the
extent to which the prior question about work decreased the likelihood
of the respondents concealing their disability, or increased the respon-
dents’ likelihood of reporting a non-existent disability—our framework
can reveal these underlying patterns.



L

f
c
b
m
m
o
m
t
t
F
e
i
W
r
t

s
r
s
f
s
i
i
c
s

2
e

t
h
t
S
i

a
g
fi
H
o
i
i
g
a
i
i
(

t
w
o
d
s
3
s
i
fi
o
h
h

. Chen, P.M. Clarke, D.J. Petrie et al. 

rom the self-completion questionnaire. The results indi-
ate that misclassification leads to statistically significant
iases in the parameters of the mortality and morbidity
odels. While the bias is similar in absolute size across the
odels, this translates to relative biases in the coefficients

f SAH ranging mostly from 10% to 20% in the mortality
odel, and as high as 100% for the morbidity model. For

he coefficients of other covariates, the biases, while sta-
istically significant, are more moderate and around 10%.
inally, we use our approach to estimate potential het-
rogeneity in the effect of SAH by specifying models with
nteractions of SAH with sex, age, education and income.

ith the exception of gender differences in mortality, the
esults indicate that the long-term effects of SAH on mor-
ality and new chronic conditions are quite homogenous.

We conclude the paper in Section 7. Our findings
uggest that when specifying models where SAH is the
egressor of interest, it is important to adjust for misclas-
ification. In case this is not possible, SAH measures from
ace-to-face interviews should be strongly preferred over
elf-completed SAH measures. On the other hand, our find-
ngs also indicate that when specifying models where SAH
s used as a key control variable, there is likely to be little
ontamination of the variables of interest from the misclas-
ification in SAH.

. Identifying misclassification in SAH: an intuitive
xample

To fix ideas and give the intuition behind the identifica-
ion, we discuss in this section a simple example where we
ave two binary misclassified SAH measures with poten-
ially different misclassification probabilities and where
AH influences the probability of being dead at some point
n the future.

Consider a simple hypothetical setting, where we
ssume that individuals’ self-assessed health, h∗, is either
ood or bad, and each of these two health groups has a
xed probability of being alive or dead in some future year.
owever, we do not observe individuals’ SAH, h∗; we only
bserve two potentially misreported measures of it for each

ndividual—h1 and h2—, and whether or not, by some time
n the future, they are dead (y). We  use this example to
ive the intuition on how the observed data (y, h1, h2) and
ssumptions about the nature of misclassification provide
nformation to identify both the rates of misclassification
n SAH and the relationship between SAH and mortality
Fig. 1).

Panel (A) depicts the observed population distribu-
ion for the two potentially misreported measures of SAH,
hich results in four distinct subpopulations (the four cells

f the 2×2 matrix). In this example, we use a symmetrical
istribution for convenience; however, the intuition is the
ame for asymmetrical distributions. In the top-left cell,
1.3% of the population report bad health for both mea-
ures; and 31.3% also report good health for both measures
n the bottom-right cell. However, there is some misclassi-

cation in at least one of the reported measures, as 18.7%
f the individuals report bad health for h1 but report good
ealth for h2; and, in addition, 18.7% report good health for
1 but bad health for h2. In each of these four groups there

4
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is likely to be some individuals with good and bad health
(h∗). Assume that misclassification in h1 and h2 are inde-
pendent; that is, misreporting in h1 does not change the
probability of misreporting in h2 or vice versa. This implies
that five factors determine Panel (A), the joint distribution
of (h1, h2): the true proportion of the population who  are in
good health, plus four misclassification probabilities, two
for each measure (the conditional probability of reporting
good health when SAH is bad, and the conditional prob-
ability of reporting bad health when SAH is good). Now
given independence in misclassification and the portion of
the population in the off-diagonals (18.7% in each), this nar-
rows the possible set of misclassifications probabilities that
could result in this observed population distribution. But,
unfortunately, there is still an infinite number of possibili-
ties.

Two  such possible underlying misclassification patterns
that would result in the distribution observed in Panel (A)
are shown in Panels (I) and (II). The green solid dots rep-
resent those whose SAH h∗ is good, while the red hollow
dots represent those whose h∗ is bad. Panel (I) represents
a case where both measures h1 and h2 have similar rates
of misclassification, whereas in Panel (II), h1 has low rates
of misclassification while h2 has high rates of misclas-
sification. With only data on (h1, h2) it is impossible to
distinguish between the patterns of (I) and (II), but we  now
show how using the additional information about the mor-
tality of each of the four groups (Panel (B)) can be used
to identify which is the true misclassification pattern. The
crosses in Panel (B) represent those in each group that had
died by some future year. We  can see that those who report
bad health for both measures have a mortality rate of 48.8%,
while those who report bad health for h1 and good health
for h2 have a mortality rate of 46.5%. This suggests that the
composition of these two  groups in terms of the underly-
ing proportion with good and bad health (h∗) is very similar.
This is compared with those who  report good health for h1
and bad health for h2, whose mortality rate is much lower
(13.5%), which suggests that this group has a very differ-
ent underlying composition of h∗ and is more similar to the
group that reports good health for both measures (mortal-
ity 11.2%). This indicates that the misclassification pattern
in Panel (I) is incompatible with the data, and that the actual
misclassification in this case is that of Panel (II).

Once the misclassification is known, it is straightfor-
ward to identify the effect of health h∗ on mortality, that is,
the difference in mortality rates by good and bad h∗. In each
of the four groups the proportion of those with good and
bad health is known and so is each group’s mortality rate.
Thus, to reveal the two  unknown mortality probabilities
for those in good and bad health we can use the mortality
of any two  cells of Panel (B), for instance from the leading
diagonal groups, since this simplifies to two equations with
two  unknowns,

0.971 YB + 0.029 YG = 0.488,
0.029 YB + 0.971 YG = 0.112,

where YB ≡ P(y = 1|h∗ = BAD) is the mortality rate of the
group in bad health, and YG the analogue of those in good
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Fig. 1. Example: Identification of misclassification patterns from observed data. Notes: Graphical representation of identification of unobserved misclas-
sification patterns from observed data using a fictional example of a binary unobserved health variable h∗ (=1 if “GOOD”,=0 if “BAD”) with P(h∗ = 1) = 0.5,
two misclassified measures of health, h1 and h2, and an outcome y representing mortality (=1 if “dead”, =0 if “alive”). Results rounded to one decimal place
(numbers) or whole dots (graphs). Panels (A) and (B) contain the joint distribution of h1 and h2. Panel (B) superimposes the outcome y and indicates death
rate  P(y = 1|h1, h2) in each cell. Panels (I) and (II) indicate two potential underlying misclassification patterns compatible with the observed distribution of
h1 and h2. Panel (II) is the only misclassification pattern compatible with the observed distribution of h1, h2 and y. Details of the data generating processes:
F ∗ ∗ .5. For p ∗ m
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Consider a logit model for mortality, an outcome we will
use in our application in Sections 5 and 6. The outcome yi

5 Econometric approaches related to ours include Gosling and Saloniki
(2014) and Kane et al. (1999); but these papers do not include regres-
or  both panels (I) and (II), P(y = 1|h = 1) = 0.1 and P(y = 1|h = 0) = 0

II),  ı1
j|k = 0.05 and ı2

j|k = 0.36 for all j /= k. See Tables A1 and A2 in the App

arameters � ≡ P(h∗ = 1) and ım
j|k(m = 1, 2, j /= k).

ealth. The first equation represents the top diagonal cell
eporting bad health for both measures; and the second,
he bottom diagonal cell. The mortality in each cell is a
eighted average of the unknown mortality for those in

ood and bad SAH (e.g., for those reporting bad health for
oth measures, 97.1% are in bad health and 2.9% are in good
ealth). Solving the equations reveals that, in our exam-
le, YG = 0.10 and YB = 0.50, so that the effect of SAH on
ortality is -0.40.

Appendix A.7 provides the formulas for the proportion
f the population in each group and the average mortality of
ach group which shows that the general solution for iden-
ifying the misclassification pattern and the effect of health
n mortality equates to solving seven equations with seven
nknowns (the five parameters of the misclassification, and
he two of the mortality). Next, we consider how to set up
nd solve such a case in a regression framework.
. Econometric methods

In this section, we translate and generalise the pre-
ious example of misclassification in SAH to a formal

5

anel (I), P(hm = |h = k) ≡ ı
j|k = 0.25 for m = 1, 2 and all j /= k. For panel

or the general equations giving the cells of these matrices in terms of the

regression framework that can be easily applied to
commonly estimated health economic models and accom-
modates covariates, interaction effects with unobserved
SAH, multinomial SAH with more than two  categories,
and heterogeneous misclassification probabilities (Section
3.1). We  then present an expectation-maximisation (EM)
algorithm to estimate this model, and discuss two  ways
of potentially improving the estimation in finite samples:
penalisation and system estimation (Section 3.2).5

3.1. Model specification
sors and are limited to linear models, respectively. Battistin et al. (2014)
develop a Bayesian approach. In all these papers the misclassified regres-
sor is binary. Hu (2008) provides a nonparametric estimator for the
same setting that we consider. See Schennach (2016) and Hu (2017) for
overviews of the recent econometric measurement error literature.
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6 See Hu (2008) for a discussion of an alternative identifying assump-
tion: that the estimated direction of the impact of each health level on the
outcome is known; that is, in this case, that ˆ̨  is negative.

7 With our approach it is also straightforward to increase the flexibility
of  the parametric form in the misclassification equations to test the sensi-
. Chen, P.M. Clarke, D.J. Petrie et al. 

quals 1 if individual i is dead 15 years after the initial sur-
ey, and 0 otherwise. We  are interested in how SAH, h∗

i
,

t the time of the initial survey, is related to mortality yi.
AH is an (ordinal) categorical variable with five outcomes,
∗
i

∈ {0, 1, 2, 3, 4}, where h∗
i

= 0 indicates poor health and
∗ = 4 excellent health. The key feature of the models we
onsider is that SAH, h∗

i
, is unknown; what is known instead

s an individual’s reported SAH, and this might be misclas-
ified. Each individual reports his or her SAH twice, thus
roviding two potentially misclassified measures. SAH is
elated to the probability of dying as follows:

(yi = 1|h∗
i , xi) = exp(d∗′

i  ̨ + x′
i
ˇ)

1 + exp(d∗′
i  ̨ + x′

i
ˇ)

≡ �(d∗′
i  ̨ + x′

iˇ). (1)

here x′
i

 ̌ represents a linear index in xi, a K × 1 vector
f covariates (including a constant term) with conform-

ng coefficient vector ˇ. The main interest lies in the linear
ndex d∗′

i  ̨ which captures the impact of SAH. The vector
∗
i = (d∗

1i, d∗
2i, d∗

3i, d∗
4i)

′ consists of a set of indicator vari-
bles of a particular health status, d∗

ji
= 1(h∗

i
= j) for j =

, 2, 3, 4, where 1( · ) denotes the indicator function; and
 = (˛1, ˛2, ˛3, ˛4)′ is the corresponding vector of coeffi-
ients.

If h∗
i

were observed, (1) would serve as the basis for
 standard logit estimation; but since h∗

i
is unobserved,

his is infeasible. Instead, we consider conditions under
hich we can estimate  ̨ and  ̌ by using two poten-

ially misclassified SAH measures denoted as h1i and h2i,
orresponding to the first and second response of the
ndividuals, respectively. We  define the following mis-
lassification probabilities—i.e., conditional probabilities of
isreporting SAH—as

m
k|j = P(hmi = k|h∗

i = j, xi) ∀j, k = 0, 1. . .,  4, and j /= k, (2)

or the two reported SAH measures m = 1, 2. To complete
he description of the system, we define the distribution
f SAH as P(h∗

i
= j|xi) ≡ �ji. The marginal distributions of

he two reported SAH measures can then be expressed as
(hmi = k|xi) =

∑
j�jiı

m
k|j .

The parameters of the outcome equation (1) can be
stimated using the outcome model, the joint conditional
istribution of the data (yi, h1i, h2i|xi) and two assump-
ions:

CIA (Conditional Independence Assumption): Condi-
tional on SAH status h∗

i
and on observed variables xi,

the reported measures, h1i and h2i, are independent of
each other and of the outcome, yi.

NMA  (No Mirror Assumption): ım
j|j > ım

k|j, ∀j, k,.

The first assumption, which relates to the relation-
hip between the misclassified health measures and the
utcome, is used to simplify the structure of the joint dis-
ribution of (yi, h1i, h2i|xi), see Appendix A.1 and A.2 for
etails. Intuitively, one can see the identifying value of this
ssumption by considering the opposite degenerate case

here h1i = h2i (perfect positive dependence); then, our

etting effectively reduces to the naïve case where all the
isclassification is still “hidden” in one measure. As we
ove away from the case of perfect dependence towards

6
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independence, more and more of the misclassification is
revealed through the off-diagonals of the joint distribution
of h1i and h2i which indicate conflicting answers. Thus, even
under moderate violations of CIA the estimator is likely to
be more informative than the naïve approach treating h1i
or h2i as if it was h∗

i
. We  discuss some empirical simula-

tion evidence of this robustness in the next section. The
second assumption is used to ensure a unique solution for
the estimation. By assuming that the probability of truth-
fully reporting a health level j is larger than any probability
of misreporting it, NMA  rules out the “mirror solutions” in
which probabilities of misreporting and correctly reporting
are switched along with the impact of each health level on
the outcome yi is also switched.6 As we show in Appendix
A.2, if the regressors xi are discrete, all objects of the sys-
tem (the parameters of the outcome model, as well as all
misclassification probabilities and the distribution of SAH)
are identified and directly estimable. When some of the
regressors are continuous, the system remains nonpara-
metrically identified and nonparametric estimation (Hu,
2008) is possible in principle. But in practice the flexibility
offered by such an approach might come at the cost of high
small sample bias and a computational intensity that might
quickly prove prohibitive if there are numerous regressors
over which the level of misclassifications may  vary. Instead,
we  proceed by using a more standard parametric approach
for the misclassification, but which has the advantage of
reducing the impact of small sample bias and of easily
being able to incorporate many regressors in the misclas-
sification equations.7 As a basic specification, we assume
that the misclassification probabilities and SAH are known
multinomial-logit-based functions of the regressors:

ımk|j =
exp(− exp(x′

i
�m
k|j))

1 +
∑

k:k /=  j exp(− exp(x′
i
�m
k|j))

,

�j,i =
exp(x′

i
�j)

1 +
∑4

j=1 exp(x′
i
�j)
. (3)

The added exponential function in the argument of the
multinomial logit form for ım

k|j directly implements the con-
straint implied by NMA  that ım

j|j > ım
k|j .

Finally, the proposed approach can be extended to non-
linear outcome models other than logit, such as Poisson
count models or Weibull duration models (see Appendix
A.5). Another potentially useful extension of model (1) is
to the case where the impact of unobserved SAH on the
outcome may  differ based on an individual’s characteris-
tics. Our flexible approach allows us to go further and also
accommodate interaction terms between all or some of the
tivity of the results to a particular functional form. More generally, because
of  the underlying nonparametric identification of the misclassification,
our approach can also serve as the basis of a nonparametric estimation via
a  series estimation approach (such as by including polynomials or splines
of  the linear indices, cf. Newey, 1994).
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to reduce the loss of degree of freedoms relative to the
case of separate estimation.8 Adapting the EM algorithm
. Chen, P.M. Clarke, D.J. Petrie et al. 

egressors xi and unobserved health:

i = 1

⎛
⎝

J∑
j=1

d∗
ji˛j +

J∑
j=1

d∗
jixki˛j,x + x

′
i  ̌ + εi > 0

⎞
⎠ ,

i = 1, . . .,  N, (4)

or some variable of interest xki such as, say, education (cf.
ppendix A.2).

.2. Estimation: a penalised finite mixture (PFM)
pproach

The full likelihood of the model takes the form of
 finite mixture or latent class model (see eq. (16) in
ppendix A.3). We  propose to estimate the model via

he Expectation-Maximisation (EM) algorithm (Dempster
t al., 1977) which we found to be substantially faster and
ore stable than competitor approaches such as standard
aximum likelihood or GMM  (see Appendix A.4), mak-

ng it our only viable estimator. The EM algorithm iterates
etween the maximisation or M-step, and the expectation
r E-step. The nth iteration of the M-step is

ˆn = argmax�

N∑
i=1

�̃i(�; yi, h1i, h2i, xi, ŵ
n

i ), (5)

here � collects all the parameters of the system—˛, ˇ, �,
nd �m

k|j for m = 1, 2 and j /= k— and

˜
i( · ) =

4∑
j=0

ŵ
n

ji ( ln F(yi|h∗
i = j, xi)

+ ln F(h1i|h∗
i = j, xi) + ln F(h2i|h∗

i = j, xi) + ln �ji − ln ŵ
n

ji)

− t

N
�m

′
j �

m
j , (6)

here all F( · | · ) denote likelihood functions of their
rguments (see Appendix A.3 for details). Equation (6)
s a penalised estimate of the likelihood obtained by
onditioning on and summing over estimates of the pos-

erior probabilities ŵ
n

ji = P̂
n

(h∗ = j|yi, h1i, h2i, xi). The term
t
N �m

′
j
�m
j

is a ridge penalty term for the parameters of
he misclassification probabilities (�m

j
) with scalar tuning

arameter t. We  discuss the advantages and disadvantages
f penalisation below; for t = 0, Eq. (6) is a standard M-
tep. In the (n + 1)th iteration of the E-step, we update the
osterior probabilities as follows:

ˆ
n+1

ji =
�̂n
ji
F̂
n

(yi|h∗
i

= j, xi) F̂
n

(h1i|h∗
i

= j, xi) F̂
n

(h2i|h∗
i

= j, xi)∑4

j=0
�̂n
ji
F̂
n

(yi|h∗
i

= j, xi) F̂
n

(h1i|h∗
i

= j, xi) F̂
n

(h2i|h∗
i

= j, xi)

,

(7)

n

here all F̂ ( · | · ) correspond to terms evaluated at �̂
n
.

The increased stability and speed of EM comes from the
act that, first, as opposed to the full likelihood �i( · ) (cf. A.3),
n �̃i( · ) of the M-step, the logarithm goes through the sum

7
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of the finite mixture components of the joint distribution
F(yi, h1i, h2i|xi); and, second, these components depend on
separate sets of parameters (since the wji are fixed in the
M-step), meaning that each can be maximised separately:
the first term in the parentheses, F(yi|h∗

i
= j, xi) is a func-

tion only of (˛, ˇ); the second and third are functions of
all the �1

k|j and �2
k|j vectors (with j /= k), respectively; and

�i = �(xi) is a function only of �.
The penalisation of misclassification parameters in our

estimation addresses a potential finite sample issue of low
statistical power given that misclassification probabilities
(i) may  depend on many parameters (if the dimension of xi
is large) and (ii) may  be small. This implies that in prac-
tice the misclassification probabilities may  be identified
from potentially low frequency cells of the joint distribu-
tion of (yi, h1i, h2i|xi). In the most extreme case, the sample
likelihood function may  be maximised for a value of a mis-
classification probability equal to zero, which may  manifest
itself as a convergence problem in the maximum likeli-
hood procedure since parameters will tend to infinity. But
even in less extreme cases, where estimates are finite, they
might be biased. These issues, while originating in the esti-
mates of the misclassification probabilities, may  spill over
to the parameter estimates of the outcome equation. To
overcome such convergence issues and reduce the small
sample/low statistical power bias we  suggest implement-
ing a penalised estimation by setting t > 0 in (6). This rules
out infinite estimates and reduces extreme misclassifica-
tion probabilities. The tuning parameter determines the
weight given to the penalty. However, as with all penalised
likelihood estimations, it can introduce bias: if the penalty
is too harsh (that is, if t is too large), the overall bias of the
estimator may  increase. Since our primary objective with
the penalisation is to ensure finiteness of all estimates, we
choose a small t > 0 in our application and check for sen-
sitivity of the results to changes of the chosen value. With
increasing N, the weight of the penalisation with a fixed
tuning parameter decreases and the penalised estimator
converges towards the unpenalised one.

In addition to penalisation, a second possible avenue
for reducing low power issues in the estimation of the
misclassification parameters is using more than one out-
come variable, say yi = (y1i, y2i). If more than one possible
outcome is available which is dependent on SAH and
conditionally independent of misclassification, then the
joint estimation of the outcomes can be beneficial for the
accuracy of the estimation and minimising bias in small
samples. We  propose pooling outcomes and treating them
both as conditionally independent of misclassification but
potentially correlated with each other. The connection
between the two  (or more) models is that the unobserved
SAH is obviously the same for each observation across both
outcome models and thus the misclassification parameters
are also the same, which can be imposed as a restriction
8 In the EM algorithm both outcomes are also used to estimate the
posterior probabilities of the unobserved SAH category. Note, we are not
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Table  1
Simulation results: Baseline DGP, N = 10,000.

h∗ h1 h h̄ ĥ1 ê1 FM PFM

Parameters of the outcome model
ˆ̨ Bias 0.002 −0.457 −0.259 −0.245 0.602 0.643 0.008 0.005

RMSE 0.050 0.460 0.268 0.253 0.647 0.686 0.085 0.083
ˆ̌

 const Bias −0.002 0.260 0.165 0.158 −0.245 −0.258 −0.010 −0.000
RMSE  0.049 0.265 0.172 0.171 0.272 0.284 0.118 0.098

ˆ̌
 slope Bias 0.003 0.156 0.141 0.057 −0.144 −0.140 0.012 0.021

RMSE 0.084 0.177 0.164 0.120 0.179 0.176 0.154 0.124
Parameters of the misclassification probabilities
�̂  const Bias 0.036 0.003

RMSE 0.393 0.289
�̂  slope Bias −0.064 −0.120

RMSE 0.517 0.363
�̂1

1|0 const Bias 0.039 0.034
RMSE 0.373 0.252

�̂1
1|0 slope Bias 0.010 −0.199

RMSE  0.612 0.424
�̂2

1|0 const Bias −0.012 0.048
RMSE 0.323 0.227

�̂2
1|0 slope Bias 0.022 −0.156

RMSE  0.547 0.380
�̂1

0|1 const Bias −0.010 0.007
RMSE 0.249 0.195

�̂1
0|1 slope Bias 0.028 0.031

RMSE 0.337 0.246
�̂2

0|1 const Bias −0.029 0.044
RMSE 0.235 0.194

�̂2
0|1 slope Bias 0.049 −0.016

RMSE 0.281 0.221

Notes: Cell entries show bias and root mean square error for parameters estimated over 500 Monte Carlo replications for the estimators using actual

SAH  (column h∗), reported SAH (h1), the average of h1 and h2 (h), h1 in the sample restricted to i with h1i = h2i (h̄), predicted h1 (ĥ1), the residual from a

prediction of h1 (ê1), and the Finite Mixture (FM) and Penalised Finite Mixture (PFM) estimators that adjust for misclassification. For the PFM, the tuning
parameter is set to t = 0.5. Observations are drawn from yi = 1(  ̨h∗

i
+ ˇconst + ˇslopex + εi > 0), with  ̨ = 1,  ̌ const=0,  ̌ slope=1; with the distribution of h∗

i
given by �i = �(�const + �slopexi), with �slope = 1.5 and �const = −0.1342; and the misreporting probabilities by ım

k|j = �(− exp(�m
k|jconst + �m

k|jslope xi)), m =
1 �2

0|1cons
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,  2, j /= k = 0, 1, where �m
k|jslope = 1 for all m, k, and �1

0|1const = −0.25, 

etails on the DGP.

s straightforward. In Eqs. (5)-(7), the terms F(yi|h∗
i

= j, xi)
re simply replaced by F(y1i|h∗

i
= j, xi)F(y2i|h∗

i
= j, xi).

. Monte Carlo experiments

Next, to benchmark the performance of our proposed
nite mixture (FM) and penalised FM (PFM) estimators, we
ompare their performance to the ideal estimator that uses
he unobserved SAH status which is infeasible in practice,
nd, on the other end of the spectrum, to the naïve estima-
or that just uses the first observed reported SAH measure,
reating it as if it was the SAH status. As further points
f comparison, we also examine four potential competi-
or estimators, which address misclassification in ad-hoc
ays sometimes encountered in the literature. We  exam-

ne the estimators’ finite sample performance in a Monte
arlo simulation study.

The baseline design we use is a simple data generating

rocess (DGP) with a single regressor xi and a binary SAH

ndicator h∗
i
. Details of the parameter specification choices

nd the drawing procedure are given in the table notes and,

roposing a seemingly-unrelated-regression-type approach that exploits
fficiency gains through correlated errors in the outcomes.

8

t = −0.75, �1
1|0const = 0, and �2

1|0const = −0.5. See Appendix B.1 for more

more fully, in Appendix B.1. Similar to the survey data used
in our application, the reported SAH measures in our cho-
sen simulation DGP have distributions which are similar
to each other while at the same time there is a substan-
tial share of conflicting answers. We  use a sample size of
N = 10,  000 and replicate the estimations 500 times. The
results in Table 1 show that the infeasible estimator that
uses the unobserved SAH status (in columns “h∗”) is, as
expected, virtually unbiased. The naïve estimator which
uses the misreported SAH measure h1 (depicted in columns
“h1”), is severely biased: the average estimate of  ̨ is about
45% below its true value of 1, illustrating the pernicious
effects of misclassification.

The next four columns depict estimates of ad-hoc
approaches to dealing with misclassification. In column
“h”, the average of the two SAH measures is used as the

regressor in the models. In column “h̄”, all observations
of individuals whose second response to the SAH ques-
tion is different from the first were dropped from the
estimation sample, leaving a sample of individuals with

what sometimes is called “consistent responses” (although
this includes individuals who misreport SAH twice). The
next two columns contain estimates from approaches that
mimic  two-stage least squares in linear models. They con-
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Table  2
Simulation results: Further DGP

h∗ h1 FM PFM

(A) Interaction effect, N = 10,  000
ˆ̨  const Bias 0.008 −0.596 0.020 0.002

RMSE 0.090 0.602 0.186 0.177
ˆ̨ slope Bias −0.011 −0.409 −0.018 0.012

RMSE 0.178 0.442 0.295 0.286
ˆ̌

 const Bias −0.003 0.324 −0.015 −0.009
RMSE  0.063 0.330 0.149 0.131

ˆ̌
 slope Bias 0.006 0.514 0.018 0.024

RMSE 0.129 0.528 0.222 0.203
(B)  Categorical SAH, N = 10, 000
ˆ̨ 1 Bias 0.017 −0.293 0.039 0.013

RMSE 0.094 0.302 0.175 0.169
ˆ̨ 2 Bias 0.005 −0.534 0.028 0.012

RMSE 0.093 0.539 0.157 0.149
ˆ̨ 3 Bias 0.003 −0.754 0.019 0.001

RMSE 0.082 0.758 0.155 0.145
ˆ̨ 4 Bias 0.003 −0.937 0.027 0.010

RMSE 0.087 0.940 0.130 0.131
ˆ̌

 const Bias −0.011 0.660 −0.030 −0.009
RMSE  0.077 0.662 0.128 0.124

ˆ̌
 slope Bias 0.005 0.165 0.005 0.019

RMSE 0.071 0.180 0.073 0.077

Notes: Cell entries show bias and root mean square error for parameters estimated over 500 Monte Carlo replications for the estimators using actual SAH
(h∗), reported SAH (h1), and the Finite Mixture (FM) and Penalised Finite Mixture (PFM) estimators that adjust for misclassification. For the PFM, the tuning
parameter is set to t = 0.5. In panel (A), the DGP of the outcome model is yi = 1(˛consth∗

i
+ ˛slopeh∗

i
xi + ˇconst + ˇslopex + εi > 0), with ˛const = 1, ˛slope = 1,

ˇ ne DGP 
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const = −0.375 and ˇslope = 1. Remaining parameters are as in the baseli

he  outcome model is yi = 1(˛1 h∗
1i

+ ˛2 h∗
2i

+ ˛3 h∗
3i

+ ˛4 h∗
4i

+ ˇ0 + ˇ1x + ε
ee  Appendix B.4 for more details on this DGP.

ist of using one SAH measure as an instrument for the
ther. Both estimators use the same first stage in which
ne SAH measure is regressed on the other. The first of
hese estimators then includes the first-stage predictions

s the regressor in the outcome model (column “ĥ1”). This
pproach is inconsistent, in general, for nonlinear models,
ut it is often applied by practitioners. The second esti-
ator includes the first-stage residuals as an additional

egressor with the mismeasured SAH response in the out-

ome model (column “ê1”). This is a version of the control
unction approach and is inconsistent, in general, when the
ndogenous variable (here, SAH) is discrete.9 The results in
he table show that for all ad-hoc approaches all estimated
arameters, including the slope of xi, are very distorted.
hus, such approaches, while well-suited to classical mea-
urement error in linear models, cannot be recommended
s solutions to the measurement error problem at hand.

The remaining columns present estimates from the pro-
osed finite mixture (“FM”) estimator and the penalised

nite mixture (“PFM”) estimator. Both are able to greatly
educe the bias in the key parameter  ̨ from h1 from 46 to
ess than 1%. The other parameters of the outcome model,

9 There are very specific forms of endogeneity under which the control
unction approach is consistent with a discrete endogenous regressor (see,
or  instance, the setup used in Terza et al., 2008). Even when it is incon-
istent, the control function approach has been advocated as a potentially
seful remedy that might not cure the problem but reduce it in some cir-
umstances (Basu and Coe, 2015; Wooldridge, 2014). The control function
pproach might also be useful if the focus is on testing rather than estima-
ion.  Some tests might be valid even when the estimator is inconsistent
Wooldridge, 2014; Staub, 2009).

9

from Table 1. See Appendix B.1 for more details. In panel (B), the DGP  of

ith  ̨ = (˛1, ˛2, ˛3, ˛4)′ = (0.5, 1.0, 1.5, 2.0)′ , ˇconst = 0 and ˇslope = 1.

ˇ0 and ˇ1, are estimated similarly well. The lower part of
the table contains the parameters of the misclassification
probabilities, which are only estimable with FM and PFM.
These parameters are more difficult to estimate, as evi-
denced by their larger root-mean squared error (RMSE).
The PFM estimator has uniformly better RMSE than FM,
sometimes by as much as 50%. However, these gains in
RMSE come at the cost of introducing some bias.10

In Table 2, we present results for the parameters of the
outcome model for two further DGPs (estimates of the mis-
classification probabilities are omitted for brevity). In Panel
(A), we  extend the specification of the outcome model by
including an interaction term between SAH and the regres-
sor (h∗

i
× xi) so that the impact of SAH on the outcome varies

with xi. That this is a more challenging DGP to estimate can
be seen by observing the RMSE for the infeasible estimator,
which almost doubles for the constant in  ̨ (and more than
triples for the slope in ˛, i.e. the interaction coefficient) rel-
ative to the baseline case from Table 1. Both FM and PFM
perform well, with PFM tending to have a marginally lower
bias and RMSE than FM.  The next panel (B) extends the SAH
status from being a binary variable to being a multinomial
variable with five categories, like the one in the HILDA data.

However, the performance for FM and PFM remains similar
to the one in the baseline DGP.

10 However, even the largest biases in the misclassification parameters,
such as −0.199, only translate into biases in average marginal effects that
are  unlikely to be meaningful in practice; for instance, for the mentioned
case, the estimate of a one standard deviation change in xi on the misclas-
sification probability is 0.048 where the true effect is 0.056.
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This may  suggest that compared to the self-completion
mode the interviewing mode increases the chance that
individuals misclassify into more extreme categories; or,
. Chen, P.M. Clarke, D.J. Petrie et al. 

Appendix B contains extensive additional results, which
hed light on a number of further issues. For instance, sim-
lations with N = 1000 show that the advantage of PFM
ver FM is more pronounced in such cases of less statis-
ical information (B.2, B.3, B.4). The estimators are also
pplied to other outcome models, such as a Poisson count
ata model and a Weibull duration data model (B.5). They
re applied to DGPs with multiple outcome models, show-
ng that combining them and estimating them jointly can
urther enhance the quality of the estimates (B.6). The per-
ormance of FM and PFM is also examined and compared to
he results of Hu’s (2008) nonparametric estimator results
n DGPs where the misclassification probabilities follow a
ifferent functional form than assumed (B.7). The fact that
M and PFM outperform a nonparametric estimator in this
etting illustrates how the potential disadvantage of a mis-
pecified parametric estimator can be compensated by low
ias and RMSE in finite samples. Finally, simulations where
he conditional independence assumption (CIA) is violated
y an additional regressor in the DGP which is omitted from
he estimation show our approach’s sensitivity to one of the
ey identifying assumptions (B.8). The results show that
he approach is robust to mild and moderate departures
rom CIA. Where violations induce biases, they act simi-
arly to classical omitted variable bias, and its effect is not

orse than would be on the infeasible estimator. We  use
he lessons from the simulations in this section to inform
ur application of these methods to real world data. In the
ext section, we estimate a joint logit-logit model for mor-
ality and morbidity using two five-category reported SAH

easures and a sample of close to 13,000 individuals.

. SAH misclassification in the HILDA data

In this section we first outline the HILDA data and
escribe the repeated reported measures of SAH in some
ILDA waves. We  then use these measures to replicate

he descriptive reduced-form approach from the literature
hich involve regressing indicators of differences in the

AH measures on a vector of socioeconomic variables, and
iscuss what we can and cannot learn about misclassifica-
ion from such estimates.

HILDA is an annual Australian household-based lon-
itudinal survey that began in 2001 (Summerfield et al.,
014). The survey covers social and economic topics such
s household structure, income, work and health. Individ-
als aged 15 or over are asked to respond and reasons for
on-response are recorded where known. Wave 1 (2001)
overed a total of 7,682 households and 13,969 respond-
ng individuals. These individuals were followed up in the
ater waves and new household members joining the orig-
nal sample were also included. Overall, there are roughly
3,000 respondents in each wave of the HILDA Survey from
001 to 2016. While non-response due to death is recorded
nnually where known, the survey sample was also linked
n 2014 to the National Death Index so that details of indi-
iduals’ year and age of death are available for all those

riginally in the survey, including the subsequent non-
esponders.

In waves 1, 9 and 13 of the survey, the SAH question is
sked twice for each individual. The question is first asked

10
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as a part of the Person Questionnaire that is conducted by
an interviewer face-to-face.11 The SAH question is the first
question in the health section, and is followed by a number
of other health-related questions such as long-term condi-
tions and disabilities. We  designate this SAH variable as h1.
Respondents are asked to choose their health on a 5-option
scale “Poor”, “Fair”, “Good”, “Very Good”, and “Excellent”
which we label as 0, . . .,  4. Respondents are then issued with
the Self-Completion Questionnaire, which is to be filled in
by themselves and collected by the interviewer that day
or posted back after completion. In this questionnaire, the
same SAH question is asked again at the beginning. We  des-
ignate this SAH variable as h2, and label it in the same way
as h1. The dates of completing both questionnaires are only
available for waves 9 and 13. The median time between
completion of the two  questionnaires is 1 day in both waves
and on average, the questionnaires were completed only
4.8 days and 4.6 days apart in 2009 and 2013, respectively.
Since the surveys were taken close together, the likelihood
of an actual meaningful change in health is fairly low. As a
result, we believe that the majority of differential responses
to the SAH question are random and unlikely to be related
to changes in an individual’s underlying health status.

The top panel of Table 3 reports the joint-distribution
(in percent of respondents) from the two  SAH questions
in wave 1. About 27.8% of respondents changed their
health status between h1i and h2i, similar to that reported
by Clarke and Ryan (2006) and similar to Crossley and
Kennedy (2002) where SAH was asked twice in a differ-
ent survey. It could be that this pattern is specific to the
first wave; however, the joint distributions of h1i and h2i in
waves 9 (N = 11,110) and 13 (N = 14,993) are very similar
(middle and bottom panels of Table 3), and so is the share of
respondents giving different answers for h1 and h2: 26.4%
and 27.2% for waves 9 and 13, respectively.

Although there is a consistent percentage of individu-
als who  revised their health status in each wave, this was
not driven by the same individuals switching in each wave.
The correlation of switchers (individuals who revised their
response) in wave 1 and switchers in wave 9 is only 0.03
while the correlation of switchers in wave 9 and switchers
in wave 13 is only 0.05, which means the vast majority of
the switchers are actually new switchers from one wave
to another. This increases our confidence that switching
displays a large amount of randomness.

Given the two  questionnaires were completed around
the same time, and the percentage of switchers stays con-
sistent over time, we  conjecture that at least one of the
SAH measures, if not both, is measured with some error.
The marginal distributions of h1 and h2 given in Table 3 also
reveal that individuals are more likely to select the extreme
categories—“poor” (0) and “excellent” (4)—when respond-
ing to an interview (h1) than a written questionnaire (h2).
11 Some of these interviews were conducted over the phone, but, for
convenience, we  refer to the SAH question from the Person Questionnaire
as  face-to-face in the remainder of the text.
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Table  3
Joint distribution of reported SAH measures from Personal Questionnaire (h1) and Self-Completion Questionnaire (h2) in HILDA.

h2

Wave 1, N = 12, 908
h1 0 1 2 3 4 Total
0  2.65 1.03 0.16 0.04 0.02 3.90
1  0.55 8.94 2.11 0.30 0.02 11.92
2  0.13 2.36 21.64 3.97 0.52 28.62
3  0.04 0.53 7.23 25.67 2.03 35.50
4  0.02 0.09 0.90 5.74 13.33 20.07

Total  3.38 12.95 32.04 35.71 15.92 100.00
Wave  9, N = 11, 110

0 2.66 1.12 0.16 0.07 0.01 4.02
1  0.32 8.53 3.31 0.23 0.05 12.44
2  0.08 2.20 23.96 5.25 0.23 31.72
3  0.00 0.23 6.24 27.55 2.05 36.08
4  0.00 0.05 0.53 4.28 10.89 15.74

Total  3.06 12.12 34.20 37.38 13.23 100.00
Wave  13, N = 14,  993

0 2.31 1.21 0.19 0.04 0.01 3.75
1  0.54 9.38 3.72 0.34 0.01 14.00
2  0.11 2.40 24.16 4.84 0.36 31.86
3  0.03 0.26 6.71 27.36 2.06 36.42
4  0.00 0.02 0.42 3.93 9.60 13.97

Total  2.98 13.27 35.20 36.50 12.05 100.00
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otes: Source: HILDA waves 1, 9 and 13. Cell entries show relative frequen
1 and h2. Labels: 0=“poor”; 1=“fair”; 2=“good”; 3=“very good”; 4=“excell

lternatively, that compared to the self-completion mode
he interviewing mode reduces the chance that individuals

isclassify into the middle categories. Either or both cases
ould produce the observed joint distribution.

From here on, we focus on h1i and h2i for the first
ave in 2001 because we want to study the implications

f SAH for long-term (15-year) mortality and morbidity.
here are 12,908 individuals with responses on h1i and h2i.
escriptive statistics for selected demographic and socio-
conomic characteristics of these individuals are given in
able 4. We begin our empirical investigation by apply-

ng a reduced form strategy used in previous literature to
haracterise individual misclassification behaviour (Black
t al., 2017a). In Table 5, we present estimates of logit mod-
ls where the dependent variable is an indicator that an
ndividual gave two conflicting reports of SAH, 1(h1i /= h2i)
Column 1), an indicator that they gave a higher SAH in
he face-to-face questionnaire, 1(h1i > h2i) (Column 2),
nd that they gave a higher SAH in the self-completion
uestionnaire, 1(h1i < h2i) (Column 3). Explanatory factors

nclude age, sex, education, income, whether individuals
uffered from any chronic conditions in 2001 (chronic con-
ition), whether they were married or in a relationship
married), whether they were born overseas (overseas),
hether they were not in the labour force (not in labour

orce), whether they were unemployed (unemployed) and
hether they were currently smokers or had been smokers

n the past (smoker).
The presence of some statistically significant estimates

uggest that misclassification is related to covariates.
n particular, consistent with the previous literature,

ow education and income are strongly predictive of
iving conflicting reports. However, insignificant esti-
ates are harder to interpret. There could be different

ypes of misclassification which ‘average out’, resulting

11
percent for joint and marginal distribution of the reported SAH measures

in small insignificant effects on a change in reported
SAH (1(h1i /= h2i)). For instance, the regressor male, has
an effect on the dependent variable 1(h1i > h2i) despite
not having a significant effect on 1(h1i /= h2i). In addition,
more complex misclassification patterns can be completely
undetectable with these dependent variables and they also
tell us nothing about which of the two  measures are more
likely to be misclassified. By estimating our finite mixture
model, we can go beyond these reduced-form patterns in
misclassification and instead examine the underlying mis-
classification probabilities which generate these patterns.

6. Estimating SAH misclassification and the effects
of SAH on mortality and morbidity

In this section we present our estimates of our joint
model of SAH misclassification and of the association
between SAH and two outcomes measured 15 years after
the initial survey: mortality (whether the individual is
deceased) and, if the individual is still alive, whether they
developed any chronic conditions in the 15-year period. We
examine the estimated misclassification patterns in Section
6.1 and discuss the estimates from the outcome equa-
tions in Section 6.2, where we  also compare our results to
naïve estimates obtained ignoring misclassification. In our
empirical model, the misclassification probabilities, mor-
tality and chronic conditions further depend on the same
covariates xi as the reduced-form models in the previous
section. There were 12,908 individuals in the 2001 survey
of which 10.9% were deceased by 2016 and we  can obtain
information on the possible development of new chronic

conditions in 2016 for 7340 individuals. Means and stan-
dard deviations for these outcome variables are reported
in Table 4, along with those of the covariates. We  estimate
the two outcomes jointly using the penalised finite mix-
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Table  4
Descriptive statistics.

Variable N Mean Std.Dev.

Covariates (Wave 1)
Age/10 (years/10) 12,908 0.438 0.176
Male  (=1, if yes) 12,908 0.470 0.499
Education/10 (years/10) 12,908 1.272 0.203
Log  HH income 12,908 3.135 0.654
Chronic condition (=1 if any chronic conditions in 2001) 12,908 0.233 0.423
Married (=1, if married or in a relationship) 12,908 0.642 0.479
Overseas (=1, if born overseas) 12,908 0.243 0.429
Not  in labour force (=1, if out of labour force) 12,908 0.344 0.475
Unemployed (=1, if unemployed) 12,908 0.042 0.201
Smoker (=1, if current or former smoker) 12,908 0.493 0.500

Outcomes (Wave 16)
Dead (=1, if deceased by 2016) 12,908 0.109 0.312
Cond  (=1, if any new chronic conditions in 2016 since 2001) 7340 0.161 0.368

Notes: Source: HILDA waves 1 and 16.

Table 5
Estimation results: Logit models for changes in SAH response.

Dep. var. 1(h1 /= h2) 1(h1 > h2) 1(h1 < h2)
(1) (2) (3)

Age/100 −0.17 0.88 −0.79
(0.65) (0.94) (0.76)

Age2/100 1.01 −0.83 1.91**
(0.67) (0.98) (0.78)

Male  0.05 0.23** −0.08
(0.04) (0.06) (0.05)

Education/10 −0.59** −0.44** −0.55**
(0.11) (0.16) (0.13)

Log  HH income −0.13** −0.16** −0.07*
(0.03) (0.05) (0.04)

Chronic condition −0.14** 0.27** −0.39**
(0.05) (0.07) (0.06)

Married 0.13** −0.02 0.19**
(0.05) (0.07) (0.06)

Overseas 0.21** 0.22** 0.15**
(0.05) (0.07) (0.05)

Not  in labour force 0.03 0.11 −0.03
(0.05) (0.08) (0.06)

Unemployed 0.05 0.10 0.01
(0.10) (0.14) (0.12)

Smoker 0.03 −0.03 0.06
(0.04) (0.06) (0.05)

Mean  dep. var. 0.278 0.102 0.176
N  12,908 12,908 12,908

Notes: Source: HILDA wave 1, own calculations. Cells represent estimated coefficients, and robust standard errors in parentheses.

t
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(
fi
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* p < 0.10.
** p < 0.05.

ure estimator (with the tuning parameter set to a value of
 = 0.5).12

.1. SAH and misclassification

Fig. 2(a) shows the average predicted probabilities of

eporting behaviour by gender. Each of the five panels illus-
rates how males (M)  and females (F) in each health state
h∗ = j) are likely to respond when answering h1 and h2. We
nd there is substantial misclassification in both reported

12 Tables C1–C2 in the Appendix report robustness tests from using a
ange of different values for t that show that our results are not sensitive
o  changes of t around the chosen value of 0.5.

12
SAH measures but more so for the self-completion ques-
tionnaire (h2) with this being concentrated in those with
excellent and poor health. This leads to a pattern consistent
with a tendency towards ticking middle boxes in the self-
completion questionnaire. As expected we  see that most
misclassification is by only one category with other larger
misclassifications rare.

As already noted there was  a discrepancy between the
two  SAH measures in those reporting being in “excel-
lent” health, with “excellent” health being reported more
often in face-to-face interviews (h1) than when filling out

the questionnaire privately in the self-completion ques-
tionnaire (h2). The results seen in (a) suggest that this is
because males in excellent health (h∗ = 4) are more likely to
under-report their health in the self-completion question-
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Fig. 2. Misclassification in SAH for males and females. Notes: Estimates from HILDA data waves 1 and 16 for individuals who responded to SRH questions
in  wave 1 (N = 12,908). In Panel (a), weighted average predicted probabilities are presented for the separate samples of males and females. In Panel (b),
w s are ev
m ales, (b)
t orting.
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eighted average predicted probabilities are presented when probabilitie
ay  also be due to other charateristics which differ across males and fem

hat  the differences give the average marginal effects of gender on misrep

aire (very few males in excellent health under-report their
ealth in the face-to-face case13) and males and females in
ery good health (h∗ = 3) are more likely to over-report
heir health in the face-to-face questionnaire. For males
nd females in good health (h∗ = 2) we also observe simi-
ar over-reporting patterns with nearly 20% over-reporting
heir health in the face-to-face case compared to just under
0% over-reporting in the privately answered question-
aire. Conversely, for males and females in poor health
h∗ = 0) the share truthfully reporting their health status is

uch higher in the face-to-face interviews with over 20%

ver-reporting their health in the self-completion ques-
ionnaire. Perhaps poor health individuals are more honest
n the face-to-face case because their poor health is evident

13 Indeed, males in excellent health reporting being in excellent health in
he face-to-face questionnaire has the highest share of truthful reporting
f  all categories shown in the figure: it would seem men  like to say that
hey are in excellent health.

13
aluated at male=0 and then male=1. While in (a) differences in reporting
 attempts to isolate the role of gender itself on reporting behaviour such

or they can verbally justify claiming they have poor health.
Recency effects (in HILDA the interviewer reads out the
category “poor” last) might additionally reinforce truthful
reporting of this category in interviews. For those in fair and
good health we see very little evidence of under-reporting.

Can the gender-specific reporting patterns seen in
Fig. 2(a) be explained by potential differences in the
observed covariates such as age, education, income, etc.?
In Fig. 2(b), we  show a graph that relies on gender dif-
ferences that have been adjusted for differences in the
covariates. The figure shows the average predicted pos-
terior misclassification probabilities grouped into upward
and downward misclassification when those in each SAH
status is assumed to be male and female respectively (i.e.,
the difference between the two  gives the average marginal

effect of gender on misclassification). We  see that the pat-
terns are largely similar to those observed when we look
at the misclassification for each subgroup in the popula-
tion. That is, the answer to the question posed at the start



L. Chen, P.M. Clarke, D.J. Petrie et al. Journal of Health Economics 78 (2021) 102463

Table  6
Estimation results: System Penalised Finite Mixture (PFM) models for mortality (dead: yes/no) and morbidity (chronic condition: yes/no).

Dep. var. Dead Chronic cond.

PFM Diff. to naïve PFM Diff. to naïve

h1 h2 h1 h2

(1) (2) (3) (4) (5) (6)

˛1 −0.80** −0.06 −0.17 −0.15 0.01 −0.23*
(0.14) (0.04) (0.11) (0.17) (0.08) (0.12)

˛2 −1.13** −0.10** −0.23** −0.41** 0.03 −0.21**
(0.15) (0.05) (0.09) (0.17) (0.08) (0.10)

˛3 −1.46** −0.12* −0.21** −0.71** −0.02 −0.25**
(0.16) (0.06) (0.09) (0.18) (0.08) (0.10)

˛4 −1.77** −0.24** −0.26** −1.11** −0.16* −0.37**
(0.20) (0.09) (0.12) (0.20) (0.09) (0.11)

Age/100 −3.90** −0.11 −0.50** 6.28** −0.08 −0.28**
(1.56) (0.08) (0.12) (1.39) (0.09) (0.09)

Age2/100 13.20** 0.04 0.56** −3.08** 0.00 0.29**
(1.44) (0.08) (0.14) (1.49) (0.10) (0.11)

Male  0.58** −0.00 −0.02** −0.12* 0.01 −0.01
(0.08)  (0.00) (0.01) (0.07) (0.00) (0.00)

Education/10 −0.12 0.03** −0.01 −0.52** 0.01 −0.00
(0.22)  (0.01) (0.02) (0.18) (0.01) (0.01)

Log  HH. income −0.10* 0.01** 0.02** −0.17** 0.01** 0.02**
(0.06) (0.00) (0.01) (0.06) (0.00) (0.00)

Chronic condition 0.27** −0.03* −0.07** 0.39** −0.00 −0.05**
(0.09) (0.02) (0.02) (0.09) (0.02) (0.02)

Married −0.38** −0.01** 0.01 −0.14* 0.00 0.01*
(0.08) (0.00) (0.01) (0.08) (0.00) (0.00)

Overseas −0.25** 0.01** 0.02** −0.05 0.01** 0.01**
(0.09) (0.00) (0.01) (0.08) (0.00) (0.00)

Not  in labour force 0.07 −0.02** −0.05** 0.13 −0.00 −0.02**
(0.11) (0.01) (0.01) (0.09) (0.01) (0.01)

Unemployed 0.07 0.01 0.03** 0.31* 0.01 0.01*
(0.25) (0.01) (0.01) (0.17) (0.01) (0.01)

Smoker 0.60** 0.00 0.02** 0.29** 0.00 0.01
(0.08)  (0.01) (0.01) (0.07) (0.00) (0.00)

N  12,908 12,908 12,908 7340 7340 7340

Notes: Source: HILDA waves 1 and 16, own calculations. Bootstrap standard errors in parentheses. Columns (1) and (4) present the coefficients of the joint
PFM  model estimated for the binary dependent variables ‘Dead’ and ‘Chronic cond.’. Columns (2), (3) and (5), (6) show the PFM coefficient estimate minus
the  coefficient estimate from models using h1 or h2 (and the corresponding bootstrapped standard error for this difference). The independent variable
‘chronic condition’ refers to whether the individual had a chronic condition in 2001, while the dependent variable ‘Chronic cond.’ refers to whether they
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* p < 0.10.

** p < 0.05.

f this paragraph is that the role of gender seen in the sub-
roup analysis (a) is not being masked by the role of other
ndividual characteristics on misclassification.

While Fig. 2 considers misclassification probabilities
or males and females there is also considerable het-
rogeneity in the individual probabilities of reporting
ealth status truthfully by other individual characteris-
ics. In the appendix we present the equivalent figures
ut where we consider the role of income, age and edu-
ation on misclassification (Figs. C1–C3). Of note, we see
hat, after controlling for other characteristics, low income
ndividuals are more likely to over-report their health
ompared to high income individuals, older individuals
re more likely to misclassify in general compared to
ounger individuals, and there are limited differences
n misclassification related to education apart from the
xtreme categories in the self-completion questionnaire,

here those with low education are more likely to over-

eport their health as excellent, while high education
ndividuals are more likely to under-report their health as
oor.

14
6.2. Impact of SAH misclassification on the outcome
model

Table 6 contains the estimated parameters of our
penalised finite mixture models for mortality and morbid-
ity (Columns 1 and 4) along with the difference compared
to what the estimates would have been using naïve esti-
mators h1 and h2 (Columns 2–3, and 5–6). For the key
parameters of interest, the health coefficients ˛j , the dif-
ferences to the naïve approaches are often significant and
range from small to large. While they are of a similar abso-
lute magnitude across outcomes (that is, the differences
in Column 2 are about the same as those in Column 5; and
those in Column 3, as those in Column 6), they are quite dif-
ferent in relative terms: For mortality, the PFM estimates
differ by about 10% to 20%; but some PFM estimates of ˛j are
more than twice as big in the chronic condition equation. In

most cases, we  find that by using our PFM approach there
are larger difference in health outcomes between SAH cat-
egories than when misclassification is ignored. The biases
in estimates of ˛j using the face-to-face responses (h1) are
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cation (12 years of schooling) vs high education (16 years),
and low income (25th percentile) vs high income (75th
percentile).14 The results are presented both for the PFM
ig. 3. Heterogeneity in the effect of health on morbidity (cond) and mort
ndividuals who responded to SAH questions in wave 1.

maller than when using the self-completion responses
h2). This is consistent with the findings of the misclassi-
cation probabilities presented in Fig. 2, Panel (a), which
howed that, on average, h1 was less affected by misclassi-
cation than h2.

There are also significant biases in the estimated coef-
cients on other explanatory variables, but in most cases

hese biases are small (in relative terms for those factors
hat are highly associated with health outcomes, or in abso-
ute terms of those that are not strongly associated with
he outcomes) and in most cases less than 10% in relative
erms. For example, in our PFM model for both mortality
nd future chronic conditions we now find that income
as a significantly smaller effect after we take into account
hat low income individuals are more likely to over-report
heir SAH; i.e., some of their poorer future health outcomes
re actually due to their current poorer SAH that they do
ot always disclose. Some of the largest effects in absolute
erms of ignoring misclassification in the outcome equa-

ion are for chronic conditions in 2001 and whether they
re in the labour force.

As a sensitivity analysis, we also estimated specifica-
ions where we replaced the continuous variables age,

15
ad): Relative change in odds. Notes: Data from HILDA waves 1 and 16 for

education and household income by sets of dummy  vari-
ables. The estimation results can be found in Appendix
Table C3 (and additional descriptive statistics for the dis-
cretised variables in Table C4). We  find broadly similar
results to the ones in our baseline specification with contin-
uous regressors, although differences tend to be somewhat
larger.

Finally, we examined potential heterogeneity of the
effect of SAH on mortality and morbidity by estimating
specifications with interaction effects in SAH. We  ran four
separate specifications where we interacted health with
education, household income, sex, and age. To facilitate
interpretation, the results are presented graphically in
Fig. 3, which gives differences in the relative odds for each
category and outcome, each evaluated at two  points: male
vs female, young (40 years old) vs old (70 years), low edu-
14 The corresponding regression results in table form are in the
Appendix, Table C5.
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stimator which adjusts for misclassification as well as for
he naïve estimator which does not.

The extent of effect heterogeneity in Fig. 3 is reflected
y how parallel the dots of the two groups (red circles vs
reen diamonds) remain along the x-axis of health cate-
ories. While the trajectories in the graphs are not perfectly
arallel, the results point to a substantial homogeneity in
he effect of SAH for these outcomes, especially consider-
ng that the groups represent rather large differences in the
nteracting variable (e.g. four years of education, 30 years
f age, or a 50 percentile change in the income distribu-
ion). Of the presented graphs, the one showing the most
mount of heterogeneity is the one giving the effect of SAH
n mortality by gender: mortality differences tend to be

arger for the middle SAH categories, and almost nonex-
stent for “excellent” health. Given the absence of striking
atterns of heterogeneity in the PFM estimates, it may  be
nsurprising that the differences to the heterogeneity in
he naïve estimates are also minor. While there are some
tatistically significant differences (namely in sex for mor-
ality and education for both outcomes; see Table C5), these
ifferences do not substantially change the patterns of the
dds ratios of mortality and development of future chronic
onditions for those in each SAH category.

. Conclusions

While previous literature has documented that a large
hare of individuals report different SAH when asked twice,
everal important questions raised by this issue have so
ar remained unanswered. Because many forms of mis-
lassification are compatible with observed differences in
eported SAH, questions such as whether reported SAH
s inherently unreliable or whether observed differences
tem from one particular deficient measure could not be
ddressed. Similarly, it was not possible to know what pat-
erns of misclassification occur nor how these vary with
ndividual characteristics. Given that SAH is arguably one
f the most widely used variables to measure health sta-
us or health capital in health economics, a key question
s also how this misclassification in reported SAH trans-
ates to biases in estimates of models where reported SAH
s used as a regressor. The question is not only if the effects
f SAH are biased by misclassification, but also whether
hese biases spill over to the effects of other regressors.

Making use of recent advances in the econometrics of
isclassification, we provide answers to these questions
ith data from a prominent household survey where SAH
as reported twice in the same wave. Thanks to the setup of

wo measurements and at least one outcome, it is possible
o identify the entire system of misclassification proba-
ilities and the effects of SAH on the outcome without
he need for additional arbitrary instruments or exclusion
estrictions (Hu, 2008). Another advantage of the approach
resented in this paper is that it specifies the effects of
he categorical SAH variable directly by including dummy

ariables for each category of SAH in the outcome model,
hich is the standard way in which the applied literature

ncludes categorical SAH variables as regressors in models.
his avoids the additional modelling step of linking cate-
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gorical SAH to some latent underlying continuous health,
which would require additional assumptions.

Our results showed that there is substantial misclas-
sification in both reported SAH measures, face-to-face
interviews and self-completion questionnaires, and that
misclassification patterns further vary by individual char-
acteristics. When considering the role of current SAH
in predicting future mortality and chronic conditions,
comparisons between our proposed PFM approach and
the naïve approaches using the misclassified responses
showed that the naïve approaches were affected by sta-
tistically significant biases that ranged in magnitude from
small to large. One result worth noting is that there were
smaller biases in the outcome equations when the face-to-
face questionnaire responses were used compared to the
self-completion responses. We found significant but small
biases for the role of explanatory variables other than SAH
when misclassification is ignored. The small magnitude of
these differences suggest that the use of SAH as a control
variable might not be badly compromised despite the large
shares of inconsistent answers in SAH. This is a result which
might be useful to researchers who do not have multiple
measure of SAH available but rely on including SAH in their
empirical analysis as a useful way of addressing omitted
variable bias from health status. However, when trying to
estimate the role of SAH on outcomes it is likely to be more
important to account for misclassification, especially if SAH
is obtained through a self-completion questionnaire.

In this paper, we  focussed on explaining the large
share of different responses by the same individuals when
asked to report SAH twice. This type of misclassification,
which we  found to be virtually uncorrelated over time,
fits our assumption of conditional independence and our
modelling of misclassification as conditionally random.
However, if there is additional misclassification that is not
conditionally independent then this remaining misclassi-
fication remains hidden. An example are further variables
that are not accounted for in our empirical specification
but that potentially influence misclassification. Our simu-
lations show that while the proposed method might not
fully account for all misclassification, such as systematic
misclassification tied to omitted variables, adjusting for
conditionally random misclassification will generally lead
to visibly improved estimates.

The proposed method for nonlinear regression models
where the key regressor is a categorical health variable
and two  misclassified measures of the regressor are avail-
able, can naturally be applied to contexts other than SAH.
Our simulation results on its finite sample performance
provide guidance to other practitioners working with mis-
classified categorical regressors. The use of ad-hoc methods
such as averaging the responses or restricting the sample
to individuals with the same responses in both measures
cannot be recommended in most cases; nor can the use of
two-stage prediction inclusion or residual inclusion. Sam-
ple sizes in the order of 10,000 observations seem to be
necessary to achieve reliable estimates when using a mis-

classified regressor with many categories. Finite sample
bias is also expected to be smaller with dependent variables
with more possible outcomes, such as counts or durations,
compared to binary dependent variables. Using a penalised



L

e
m
U
r
w
r
s
t
m
c
o
t
b
u
s
h

A

J
W
p
a
t
t
c
A
t
V
h
A
S
C
E
n

A
a

A
w

v
i
h

y

w
u
i
f

P

a
u
s
m

tities F(r0, r1, r2), which map  to the seven parameters of
the model: ˛, ˇ0, �, ı1

0|1, ı1
1|0, ı2

0|1, ı2
1|0.15 However, there
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stimator can visibly improve the performance of the esti-
ator, especially when there is limited statistical power.
sing several dependent variables jointly can also help

educe finite sample bias. Thus, our parametric approach
ith penalisation may  have advantages over nonparamet-

ic approaches in finite samples where there is limited
tatistical power (e.g. small sample size or many explana-
ory factors over which the misclassification probabilities

ay  vary). Finally, in principle, estimates of the misclassifi-
ation parameters from one study can be used to adjust key
utcome parameters from another study using the assump-
ion that the nature of misclassification is constant across
oth studies (see Appendix A.6). This might be especially
seful for exploring the sensitivity to misclassification in
tudies which only have one mismeasured SAH variable or
ave small sample sizes available.
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ppendix A. Econometric Methods: Details and
dditional results

.1 Identification in a logit model with binary SAH and
ithout covariates

Consider a simple logit model for mortality yi (=1 if indi-
idual i is dead) with binary SAH; h∗

i
= 1 indicates that

ndividual i is in good health; and h∗
i

= 0 that i is in bad
ealth:

i = 1(  ̨h∗
i + ˇ0 + εi > 0),  i = 1, . . .,  N, (8)

here 1( · ) represents the indicator function,  ̨ and ˇ0
nknown scalars and εi an IID logistically-distributed

diosyncratic error. Thus, the probability of mortality as a
unction of SAH is

(yi = 1|h∗
i ) = exp(˛h∗

i
+ ˇ0)

1 + exp(˛h∗
i

+ ˇ0)
≡ �(˛h∗

i + ˇ0), (9)
 special case of the general model (1). As before, h∗
i

is
nobserved, but two potentially misclassified SAH mea-
ures h1i and h2i are available to the econometrician. In this
inimal example, the corresponding four misclassification

17
Journal of Health Economics 78 (2021) 102463

probabilities are

ım0|1 = P(hmi = 0|h∗
i = 1) and ım1|0 = P(hmi = 1|h∗

i = 0),

for m = 1, 2, (10)

and the distribution of SAH is determined by the single
parameter

P(h∗
i = 1) ≡ �. (11)

The observed marginal distributions of the reported SAH
measures can then be expressed as functions of the param-
eters defined in Eqs. (10) and (11):

P(hmi = 1) = �i(1 − ım0|1) + (1 − �i)ı
m
1|0. (12)

All parameters, � = (˛, ˇ0, �, ı1
0|1, ı1

1|0, ı2
0|1, ı2

1|0), are
identified from the joint distribution of the data,
(yi, h1i, h2i) by using the structure of the outcome equa-
tion Eq. (9) and the two assumptions CIA and NMA. In
the context of the minimal model without regressors, the
conditional independence assumption requires a stronger
formulation: Conditional on h∗

i
, the reported h1i and h2i are

independent of each other and of yi. That is, independence
is assumed marginal of any regressors xi. And in the con-
text of binary h∗

i
, the no-mirror assumption amounts to

ım0|1, ım1|0 < 0.5.
The joint distribution of the outcome and the two mis-

reported health measures consists of the eight probabilities
P(yi = r0, h1i = r1, h2i = r2 | xi) ≡ F(r0, r1, r2), where r0 ∈
{0, 1}, r1 ∈ {0, 1}, r2 ∈ {0, 1}. Then,

F(r0, r1, r2) = � F(r0, r1, r2|h∗
i

= 1)
+(1 − �) F(r0, r1, r2|h∗

i
= 0)

= � F(r0|h∗
i

= 1) F(r1|h∗
i

= 1)
F(r2|h∗

i
= 1)

+ (1 − �) F(r0|h∗
i

= 0)
F(r1|h∗

i
= 0) F(r2|h∗

i
= 0),

(13)

where

F(rm|h∗
i

= 1) = (ım0|1)1−rm (1 − ım0|1)rm ,
F(rm|h∗

i
= 0) = (ım1|0)rm (1 − ım1|0)1−rm ,

F(r0|h∗
i

= 1) = �(  ̨ + ˇ0)r0
(

1 − �(  ̨ + ˇ0)
)1−r0 ,

F(r0|h∗
i

= 0) = �(ˇ0)r0
(

1 − �(ˇ0)
)1−r0 .

The second equality in (13) follows from CIA. To see
an example of one of the expressions in (13), consider
F(1, 1, 1):

F(1, 1, 1) = P(yi = 1, h1i = 1, h2i = 1 | xi)
= �F(1,  1, 1|h∗

i
= 1) + (1 − �)F(1, 1, 1|h∗

i
= 0)

= � �(  ̨ + ˇ0) (1 − ı1
0|1) (1 − ı2

0|1)
+ (1 − �) �(ˇ0) ı1

1|0 ı2
1|0.

The model fulfils a necessary condition for identification
since the data provides seven linearly independent quan-
15 Note that for Eq. (13) to provide seven linearly independent quantities
we  need the regularity condition that the outcome be informative of the
SAH status; that is, we need to assume that  ̨ /=  0. Thus, while one can
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re two solutions to this problem. NMA  obtains a unique
olution and identifies the parameters by selecting the
olution where the probabilities of reporting truthfully
re greater than the probabilities of misreporting. That is,
MA  rules out the “mirror solution” in which probabilities
f misreporting and correctly reporting are switched and
he impact of each health level on the outcome yi is also
witched: ˜̨  = −  ̨ and ˜̌ 0 = ˇ0 + ˛.16

Thus, under CIA and NMA, the system is just-identified,
aving the way  for estimation. If only one health measure,
ay h1i, was available, the joint distribution (yi, h1i) would
onsist of three independent probabilities. However, there
ould be five parameters to estimate—�, ı1

0|1, ı1
1|0, ˛, ˇ0—

nd the system would be under-identified. Similarly, with
wo health measures but without the outcome yi it would
lso be impossible to identify the misclassification prob-
bilities. There would only be the three independent
robabilities of the joint distribution of (h1i, h2i) to estimate
he four parameters ı1

0|1, ı1
1|0, ı2

0|1, ı2
1|0 (or five, including

).

.2 Identification in the general logit model

The model discussed so far is quite minimal. Not only
oes it not include any other regressors apart from the
ealth indicator, but the misclassification probabilities are
he same across all individuals. The identification results
ranslate easily to the case of covariates in the outcome
quation and heterogeneous misclassification probabilities
hich depend on these covariates as well. First, consider

he case of modifying the minimal model by only adding
ovariates to the outcome equation. The constant ˇ0 can
e replaced by a linear index x′

i
ˇ, where xi is a K × 1 vec-

or of covariates with conforming coefficient vector ˇ. The
oint distribution in (13) and the corresponding expres-
ions are then simply to be taken conditional on xi. The
umber of parameters to be estimated is now 6 + K (the
ve probabilities �, ı1

0|1, ı2
0|1, ı1

1|0, ı2
1|0, the key parameter

f interest ˛, as well as the K elements in ˇ). In this case,
he system is over-identified since there will be at least
1 + 2K−1) × 7 different values of F(r0, r1, r2|xi), the num-
er (1 + 2K−1) × 7 corresponding to the minimal case of a
onstant and K − 1 linearly independent binary regressors.

With covariates, it is also possible to weaken the
tronger version of the conditional independence assump-
ion invoked above in Section A.1.17 Violation of the
tronger version of the CIA can occur, for example, if men
nd women have different misreporting probabilities. In
uch a case, the assumption does not hold because the

wo misreported measures will be dependent through the
mpact of gender. Thus, by explicitly making the misclas-
ification probabilities dependent on xi and only requiring

dentify if  ̨ is equal to 0 or not, it is not possible in the case of  ̨ = 0 to
urther estimate the misclassification probabilities because the outcome
oes not inform us about which SAH group each person falls into.
16 See Hu (2008) for a discussion of an alternative identifying assump-
ion: that the estimated direction of the impact of each health level on the
utcome is known; that is, in this case, that ˆ̨  is negative.
17 The strong version of CIA was used, for instance, by Gosling and
aloniki (2014) in an application to misreported binary disability status.
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CIA to hold conditional on some xi identification can be
achieved under weaker conditions.

Is the model with covariates still identified under CIA
and NMA? Consider first the case of discrete regressors xi.
In this case, we  know from above that we could identify
the parameters for each subsample defined by one partic-
ular set of values of xi. Thus, the identification of the model
under CIA follows immediately from it being equivalent to
the identification of each subsample under the constraint
that  ̨ and  ̌ are the same across subsamples.

This reasoning also shows identification of the more
general outcome model with interactions between SAH and
all or some of the regressors xi, as presented in Eq. (4). Sup-
pose again that the regressors are discrete and that xi is fully
saturated. In that case, the interaction effects are obtained
by simply estimating the model separately for each sub-
sample (where each is already identified as before) without
imposing the restriction that the slopes on xi be the same
across subsamples.

When some of the other regressors are continuous, we
cannot directly resort to this simple approach of identi-
fication in each subsample. However, the model remains
identified: Intuitively, in an infinitely large sample, we
could discretize the continuous regressors ever more finely
and then apply identification in each subsample. A formal
proof of the model’s nonparametric identification has been
given by Hu (2008). Because of the underlying nonparamet-
ric identification of the misclassification, our parametric
approach (which consists in specifying multinomial logit
based forms for the misclassification probabilities and
SAH—cf. Eqs. (3)) can be implemented flexibly. For instance,
it is straightforward to increase the flexibility of the para-
metric form in the misclassification equations to test the
sensitivity of the results to a particular functional form.
More generally, our parametric approach can also serve
as the basis of a nonparametric estimation via a series-
estimation approach (such as by including polynomials or
splines of the linear indices, cf. Newey, 1994).

To conclude, we  discuss identification for the general
case of a categorical SAH that has five outcomes, h∗

i
∈

{0, 1, 2, 3, 4}; that is, the full model defined in Eqs. (1)-(3).
The outcome equation (1) has 4 + K parameters (˛, ˇ), and
there are now twenty misreporting probabilities (Eq. (2))
per measure hmi, m = 1, 2. When parametrised in terms
of xi as in (3), these are 20K parameters per measure. In
addition, there are four probabilities of the distribution
of SAH, � = (�1, �2, �3, �4)′, where �j ≡ P(h∗

i
= j), which

parametrised as in (3) adds 4K parameters. Thus, the grand
total is 45K  + 4 parameters to be estimated.

Without covariates, for instance, that is 49 parameters.
As before, we  can base identification and estima-
tion on the joint distribution of (yi, h1i, h2i). The joint
probabilities P(yi = r0, h1i = r1, h2i = r2 | xi) ≡ F(r0, r1, r2)
are now defined for r0 ∈ {0, 1}, r1 ∈ {0, 1, 2, 3, 4}, r2 ∈
{0, 1, 2, 3, 4}. Thus, the joint distribution has 2 × 5 × 5 = 50
support points, of which the last one is not linearly inde-
pendent. The other 49 points will provide the necessary

equations to identify the 49 parameters in the case without
covariates. With covariates, the same arguments as before
can be made. NMA  ensures the uniqueness of the solu-
tion with categorical or ordinal SAH by discarding the 119
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mirror solutions” that violate the condition that ım
j|j > ım

k|j
there are 120 sets of solutions here; i.e., 120 ways to order
he 5 groups that correspond to each health level). The
ounterpart to Eq. (13) in the case of an ordinal regressor
∗
i

is

F(r0, r1, r2) =
4∑
j=0

p∗
j
F(r0, r1, r2|h∗

i
= j)

=
4∑
j=0

p∗
j
F(r0|h∗

i
= j)F(r1|h∗

i
= j)F(r2|h∗

i
= j),

(14)

here, naturally, �0 = 1 −
∑4

j=1�j , and conditioning on

i is omitted for notational simplicity. Again, the second
quality follows from CIA.

For F(r0|h∗
i
) we have:

F(r0|h∗
i

= j) = �
(
˛j + x

′
i
ˇ
)r0(1 − �

(
˛j + x

′
i
ˇ
))1−r0 ,

for j = 1, 2, 3, 4;
F(r0|h∗

i
= 0) = �

(
x

′
i
ˇ
)r0(1 − �

(
x

′
i
ˇ
))1−r0 .

nd for F(rm|h∗):

F(rm|h∗
i = j) = (ım0|j)

1(rm=0) (ım1|j)
1(rm=1) (ım2|j)

1(rm=2)

(ım3|j)
1(rm=3) (ım4|j)

1(rm=4), for j = 1, 2, 3, 4.

n this formula, there is always one ım
k|j with j = k. These are

efined as

m
j|j = P(hmi = j|h∗

i = j) = 1 −
∑
k /=  j

ımk|j. (15)

.3 Additional EM estimation details

The model can be estimated in a number of ways based
n the joint distribution function (13), which is in the form
f a finite mixture (FM) or latent class model. One option is
MM  estimation, which is presented below in A.4. Another
ption is maximum likelihood estimation. The maximum

ikelihood estimator of the parameters of the model is

ˆ
 = argmax�

N∑
i=1

�i(�; yi, h1i, h2i, xi)

= argmax�

N∑
i=1

∑
r0

∑
r1

∑
r2

Ir0r1r2i ln(F(r0, r1, r2)), (16)

here � collects all the parameters: ˛, ˇ, �, and �m
k|j for

 = 1, 2 and j /= k. Ir0r1r2
i

is an indicator variable equal
o one if yi = r0, h1i = r1 and h2i = r2. Maximisation can
e implemented, in principle, directly via a standard
ewton–Raphson procedure based on (16). However, we

ound that, especially in models with categorical health
nd several regressors, maximum likelihood estimation via

he Expectation-Maximisation (EM) algorithm (Dempster
t al., 1977) was substantially faster and more stable, than
ither GMM  or standard maximum likelihood, making it
ur only viable estimator.
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The EM algorithm iterates between the maximisation or
M-step, and the expectation or E-step. The nth iteration of
the M-step is

�̂
n = argmax�

N∑
i=1

�̃i(�; yi, h1i, h2i, xi, ŵ
n

i ), (17)

where

�̃i( · ) =
4∑
j=0

ŵ
n

ji ( ln F(yi|h∗
i = j, xi) + ln F(h1i|h∗

i = j, xi)

+ ln F(h2i|h∗
i = j, xi) + ln �ji − ln ŵ

n

ji), (18)

and all F( · | · ) denote corresponding terms defined in (13),

and the ŵ
n

ji are estimates of the posterior probabilities
P(h∗ = j|yi, h1i, h2i, xi) defined in equation (7), and which
constitute the E-step of the algorithm. Note that Eq. (18) is
the default M-step and its use leads to what we have called
the FM estimator, while using the penalised counterpart,
Eq. (6), leads to what we  have called the PFM estimator.
Both estimators rely on the same E-step, Eq. (7).

A.4 GMM estimation

To estimate the model by GMM,  we use the indicator
variables Ir0r1r2

i
, defined as

Ir0r1r2i ≡ 1(yi = r0, h1i = r1, h2i = r2),

and which are equal to one if all their arguments are true,
and equal to zero otherwise. We  then base estimation on
the 7 × K moment conditions of the form

E( [Ir0r1r2i − Fi(r0, r1, r2)] xi ) = 0, (19)

for seven unique values of the triplet (r0, r1, r2) —e.g.,
(0,0,0), (0,0,1), (0,1,0), etc.—, and where K is the num-
ber of regressors in xi including a constant. (The eighth
variable, say I111

i
, is linearly dependent of the other

seven; as is F(1, 1, 1) of the other seven F(r0, r1, r2).
Thus, the eighth equation provides no additional infor-
mation and is discarded.) We obtain, �̂, an estimate for
� = (˛, ˇ′, p∗, ı1

0|1, ı2
0|1, ı1

1|0, ı2
1|0), by solving the GMM  min-

imisation problem

�̂ = argmin�

N∑
i=1

Q i(�)′WNQ i(�), (20)

where the [7K  × 1]-vector of moment conditions is

Q i(�) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
I000
i

− Fi(0,  0, 0)
]
xi[

I001
i

− Fi(0,  0, 1)
]
xi[

I010
i

− Fi(0,  1, 0)
]
xi[

I011
i

− Fi(0,  1, 1)
]
xi[

I100
i

− Fi(1,  0, 0)
]
xi[

I101
i

− Fi(1,  0, 1)
]
xi[

110
]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

I
i

− Fi(1,  1, 0) xi

and WN is a [7K  × 7K] positive definite weighting matrix
with plim W . The weighting matrix WN may  be specified
as the identity matrix, or estimated in an optimal two-step



L

a
t
o

A

a
n

f

w
o
x
i
t
b
i
v
e

m

P

w
t
d
b
(
P
t

E

w



t
m
t
f

f

m
W

A
m

o
s
t

e
w

. Chen, P.M. Clarke, D.J. Petrie et al. 

pproach. Note that the i subscript for the joint probabili-
ies Fi(r0, r1, r2) stems from the dependence of these terms
n xi.

.5 Counts and durations: Poisson and Weibull models

The proposed approach, which we have presented for
 logit binary outcome, can be extended to many common
onlinear models that follow the form

 (yi|h∗
i , xi) = g(  ̨h∗

i + x′
iˇ; ω), (21)

here f ( · | · ) is a functional of the conditional distribution
f yi given health status h∗

i
and a K × 1 vector of covariates

i, and g( · ) is a known nonlinear function, which might
nclude ancillary parameters ω. To avoid notational clut-
er, h∗

i
is binary. Typical examples for f (yi|h∗

i
, xi) include it

eing a survival rate (probability), the time until develop-
ng a health condition (hazard rate), the number of doctor
isits (count), or expenditures for health care (nonlinear
xpectation).

For instance, if yi follows a Poisson distribution we
ight use the specification

(yi|h∗
i , xi) = exp(−
i)
yii

yi!
, 
i = exp(  ̨h∗

i + x′
iˇ), (22)

here the left-hand-side of (22) corresponds to f ( · | · ) and
he right-hand-side to g( · ). We  can use the EM algorithm
escribed in (5)-(7) to estimate this model directly, simply
y replacing F(yi|h∗

i
) in those equations by P(yi|h∗

i
, xi) from

22). Alternatively, one could also base estimation of the
oisson model on its expectation E(yi|h∗

i
, xi) = 
i and use

he GMM  approach based on moment conditions

((yi − 
i)xi) = 0, (23)

here, here, f (yi|h∗
i
, xi) = E(yi|h∗

i
, xi) and g(  ̨h∗

i
+ x′

i
ˇ) =

i.
Similarly, if yiwas a duration and followed a Weibull dis-

ribution with parameters 
i and ω, we could estimate the
odel using the EM algorithm. The corresponding F(yi|h∗

i
)

erm in this case would simply be the probability density
unction

 (yi|h∗
i , xi) = 
iωy

ω−1
i

exp(−
yωi ),


i = exp(  ̨h∗
i + x′

iˇ). (24)

Results from a Monte Carlo simulation on the perfor-
ance of the FM and PFM estimators for Poisson and
eibull models are presented in Section B.5.

.6 Using estimates from one dataset to adjust for
isclassification in other datasets

Estimates of the misclassification system obtained from
ne sample might be used to adjust for misclassification in
ome other sample. We  discuss two possible cases in which
his is possible here.
Case 1: Same covariate specification, different data
In this case, we want to use the PFM estimates to obtain

stimates for another outcome and another dataset but
here a second measure of SAH is unavailable. However,
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the single available SAH as well as the covariates are the
same as in the original dataset. Same here means that they
are measured/coded in the same way  (for instance, same
number and labelling of categories of SAH).

Suppose Dataset A consists of i = 1, . . .,  NA observations
drawn from (yA

i
, h1i, h2i, xi), and that both CIA and NMA  are

satisfied. We  can then obtain estimates of the entire vector
of model parameters � via the PFM estimator. In particular,
there are estimates of the misclassification parameters � at
hand, say �̂A, and of the parameters of SAH, say ı̂A.

Suppose Dataset B consists of j = 1, . . .,  NB observations
drawn from (yB

j
, h1j, xj).

We  can obtain estimates of the parameters of the
outcome equation for yB

j
, say (˛B, ˇB), by estimating the

following modified version of the EM algorithm presented
in Eqs. (5)–(7). The nth iteration of the M-step is

( ˆ̨ B,n, ˆ̌ B,n) = argmax
˛B,ˇB

NB∑
j=1

�̃j(˛
B, ˇB; yBj , h1j, xj, ŵ

n

j ),

(25)

with

�̃j( · ) =
4∑
k=0

ŵ
n

kj ( ln F(yBj |h∗
j = k, xj) + ln F̂

A

(h1j|h∗
j = k, xj)

+ ln �̂Akj − ln ŵ
n

kj), (26)

where F̂
A

(h1j|h∗
j

= k, xj) is evaluated at estimates of �̂A; and

�̂A
kj

, at estimates of ı̂A.
In the (n + 1)th iteration of the E-step, the posterior

probabilities are updated according to

ŵ
n+1

kj =
�̂A
kj
F̂
n

(yB
j
|h∗
j

= k, xj) F̂
A

(h1j|h∗
j

= k, xj)

∑4
k=0�̂

A
kj
F̂
n

(yB
j
|h∗
j

= k, xj) F̂
A

(h1j|h∗
j

= k, xj)

.  (27)

Thus, compared to (5)–(7), here there is only one
reported measure of SAH, h1. Moreover, both the terms

F̂
A

(h1j|h∗
j

= k, xj) and �̂A
kj

are constructed from the PFM esti-
mates obtained from Dataset A and are not updated during
the estimation using Dataset B.

Case 2: Different specifications, same data
In this case, we want to use the PFM estimates to obtain

estimates for another outcome but for the same individ-
uals and where a second measure of SAH is unavailable.
An example would be a panel survey where two measures
of SAH are available only in some waves and some out-
comes of interest are not available in the waves with two
SAH measures (such as is the case across different waves of
HILDA). In this case, the covariates included in the models
of the two samples can but need not be the same.

Suppose Dataset A consists of i = 1, . . .,  N observations
drawn from (yA

i
, h1i, h2i, xA

i
), and that both CIA and NMA  are
satisfied. We  can then obtain estimates of the entire vector
of model parameters � via the PFM estimator. In particular,
there are estimates of the misclassification parameters � at
hand, say �̂A, and of the parameters of SAH, say ı̂A.
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Table  A1
Formulas for Panel (A) of Fig. 1: Joint distribution of (h1i, h2i).

h2i

h1i BAD (h2i = 0) GOOD (h2i = 1)

BAD (h1i = 0) Fh1h2
(0,  0) = �ı1

0|1ı
2
0|1 + (1 − �)(1 − ı1

1|0)(1 − ı2
1|0) Fh1h2

(0,  1) = �ı1
0|1(1 − ı2

0|1) + (1 − �)(1 − ı1
1|0)ı2

1|0
GOOD (h1i = 1) Fh1h2

(1,  0) = �(1 − ı1
0|1)ı2

0|1 + (1 − �)ı1
1|0(1 − ı2

0|1) Fh1h2
(1,  1) = �(1 − ı1

1|0)(1 − ı2
1|0) + (1 − �)ı1

1|0ı
2
1|0

Notes: The table shows all the outcomes of the joint distribution of h1i and h2i , Fh1h2
(r1, r2) ≡ P(h1i = r1, h2i = r2), where r1 ∈ {0, 1} and r2 ∈ {0, 1}. The right-

hand  side of the equations in the cells follow from the fact that Fh1h2
(r1, r2) = Fh1h2 |h∗=1(r1, r2) + Fh1h2 |h∗=0(r1, r2), and, by independence, Fh1h2 |h∗=j(r1, r2) =

Fh1 |h∗=j(r1)Fh2 |h∗=j(r2), where Fh1h2 |h∗=j ≡ P(h1 = r1, h2 = r2|h∗ = j), Fhm |h∗=j(rm) ≡ P(hm = rm|h∗ = j), j ∈ {0, 1} and m = 1, 2.

Table A2
Formulas for Panel (B) of Fig. 1: Joint distribution of (yi, h1i, h2i).

h2i

h1i BAD (h2i = 0) GOOD (h2i = 1)

BAD (h1i = 0) DEAD (yi = 1):
Fy h1h2

(1,  0, 0) = �YGı1
0|1ı

2
0|1 + (1 − �)YB(1 − ı1

1|0)(1 − ı2
1|0)

DEAD (yi = 1):
Fy h1h2

(1,  0, 1) = �YGı1
0|1(1 − ı2

0|1) + (1 − �)YB(1 − ı1
1|0)ı2

1|0
ALIVE (yi = 0): Fy h1h2

(0,  0, 0) =
�(1 − YG)ı1

0|1ı
2
0|1 + (1 − �)(1 − YB)(1 − ı1

1|0)(1 − ı2
1|0)

ALIVE (yi = 0): Fy h1h2
(0,  0, 1) =

�(1 − YG)ı1
0|1(1 − ı2

0|1) + (1 − �)(1 − YB)(1 − ı1
1|0)ı2

1|0
GOOD (h1i = 1) DEAD (yi = 1):

Fy h1h2
(1, 1, 0) = �YG(1 − ı1

0|1)ı2
0|1 + (1 − �)YBı1

1|0(1 − ı2
0|1)

DEAD (yi = 1):
Fy h1h2

(1,  1, 1) = �YG(1 − ı1
1|0)(1 − ı2

1|0) + (1 − �)YBı1
1|0ı

2
1|0

ALIVE (yi = 0): Fy h1h2
(0,  1, 0) =

�(1 − YG)(1 − ı1
0|1)ı2

0|1 + (1 − �)(1 − YB)ı1
1|0(1 − ı2

0|1)

ALIVE (yi = 0): Fy h1h2
(0,  1, 1) =

�(1 − YG)(1 − ı1
1|0)(1 − ı2

1|0) + (1 − �)(1 − YB)ı1
1|0ı

2
1|0

Notes: The table shows all the outcomes of the joint distribution of yi , h1i and h2i , Fy h1h2
(r0, r1, r2) ≡ P(yi = r0, h1i = r1, h2i = r2), where r0 ∈ {0, 1}, r1 ∈ {0, 1}

and  r2 ∈ {0, 1}. The right-hand side of the equations in the cells follow from the fact that Fy h1h2
(r0, r1, r2) = Fy h1h2 |h∗=1(r0, r1, r2) + Fy h1h2 |h∗=0(r0, r1, r2),

a 2), whe

j mpactn
i

d
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f
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w
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w

s
c
A

nd,  by independence, Fy h1h2 |h∗=j(r0, r1, r2) = Fy|h∗=j(r0)Fh1 |h∗=j(r1)Fh2 |h∗=j(r

),  Fhm |h∗=j(rm) ≡ P(hm = rm|h∗ = j), rm ∈ {0, 1} and m = 1, 2. Further, for co
s  used.

Suppose Dataset B consists of i = 1, . . .,  N observations
rawn from (yB

i
, h1i, xB

i
).

We  can obtain estimates of the parameters of the
utcome equation for yB

i
, say (˛B, ˇB), by estimating the

ollowing modified version of the EM algorithm presented
n Eqs. (5)–(7). The nth iteration of the M-step is

 ˆ̨ B,n, ˆ̌ B,n) = argmax
˛B,ˇB

N∑
i=1

�̃i(˛
B, ˇB; yBi , h1i, xAi , xBi , ŵ

n

i ),

(28

ith

˜
i( · ) =

4∑
j=0

ŵ
n

ji ( ln F(yBi |h∗
i = j, xBi )

+ ln F̂
A

(h1i|h∗
i = j, xAi ) + ln �̂Aji − ln ŵ

n

ji), (29)

here F̂
A

(h1i|h∗
i

= j, xA
i

) is evaluated at estimates of �̂A; and

ˆ A
ji

, at estimates of ı̂A.
In the (n + 1)th iteration of the E-step, the posterior

robabilities are updated according to

ˆ
n+1

ji =
�̂A
ji
F̂
n

(yB
i
|h∗
i

= j, xB
i
) F̂

A

(h1j|h∗
i

= j, xA
i

)

∑4
j=0�̂

A
ji
F̂
n

(yB
i
|h∗
i

= j, xB
i
) F̂

A

(h1i|h∗
i

= jxA
i

)

. (30)
Similar to Case 1, there is again only one reported mea-

ure of SAH, h1, and both F̂
A

(h1i|h∗
i

= j, xA
i

) and �̂A
ji

are
onstructed from the PFM estimates obtained from Dataset

 and are not updated during the estimation using Dataset

21
re Fy h1h2 |h∗=j ≡ P(y = r0, h1 = r1, h2 = r2|h∗ = j), Fy|h∗=j(r0) = P(y = r0|h∗ =
ess, in the cells the shorthand notation YG ≡ Fy|h∗=1(1) and YB ≡ Fy|h∗=0(1)

B. Note that there is no restriction on the relationship
between xA

i
and xB

i
. They can be identical, disjoint, or over-

lapping. The key, however, is that CIA holds conditional on
xA
i

. In practice, therefore, for many applications it might be
sensible that xA

i
be a subset of xB

i
.

A.7 Formulas for the matrices in Panels (A) and (B) of
Figure 1

Tables A1 and A2

Appendix B. Monte Carlo simulation: details and
additional results

B.1 Baseline simulation DGP

In the baseline design, xi = (1,  xi), where xi∼U(0, 1);
health status h∗

i
is drawn from a Bernoulli distribution with

probability �i; εi, from a logistic distribution. Survival sta-
tus yi (=1 if alive) is generated as

yi = 1
(

 ̨h∗
i + ˇ0 + ˇ1x + εi > 0

)
.

We use the four misreporting probabilities ı1
0|1, ı2

0|1, ı1
1|0

and ı2
1|0 to generate the two  reported health measures

h1i and h2i. Specifically, for observations with h∗
i

= 1 we
draw hmi from a Bernoulli distribution with probability
1 − ım0|1; and for observations with h∗

i
= 0 we  draw hmi
from a Bernoulli distribution with probability ım1|0. Thus,
jointly, the four misreporting probabilities, the parameter
governing the distribution of unobserved health, and the
parameters of the outcome equation ˛, ˇ0, ˇ1 determine
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ndogenously the distribution of the survival outcome yi,
nd the distribution of the reported health measures hmi.
he parameter values are specified as  ̨ = 1, ˇ0 = 0 and
1 = 1. Misreporting probabilities are parametrised as

ımk|j = �(− exp(�mk|jconst + �mk|jslope xi)),

m = 1, 2, j /= k = 0, 1,

ith all four slope parameters �m
k|jslope = 1, and the four

onstants �1
0|1const=-0.25, �2

0|1const=-0.75, �1
1|0const=0,

nd �2
1|0const=-0.5. The distribution of h∗

i
is given by

i = �(�0 + �1xi),

ith �1=1.5 and �0=-0.1342.
The simulation DGP implies that the marginal probabil-

ty of being in good health is P(h∗ = 1) = 0.7. The reported
ealth measures have marginal distributions P(h1 = 1) =
.61 and P(h2 = 1) = 0.57. The share of conflicting answers

s P(h1 /= h2)=0.37. The average misreporting probabilities
re about 0.21 (ı1

0|1), 0.31 (ı2
0|1), 0.16 (ı1

1|0) and 0.26 (ı2
1|0).

Sample sizes are N = {1000; 10, 000} and the number of
eplications is 500.

.2 Baseline simulation results and comparison to ad-hoc

pproaches to adjust for misclassification

Table B1 contains the results for the infeasible estimator
sing the unobserved h∗

i
as a regressor (column “h∗”), the

able B1
imulation results: baseline DGP.

N = 1000

h∗ h1 FM 

ˆ̨  Bias 0.004 −0.459 0.041 

RMSE 0.152 0.482 0.286 

ˆ̌
 const Bias −0.007 0.258 0.004 

RMSE 0.167 0.303 0.349 

ˆ̌
 slope Bias 0.014 0.169 0.017 

RMSE 0.271 0.317 0.457 

�̂  const Bias −0.127 

RMSE 1.142 

�̂  slope Bias −0.013 

RMSE 1.560 

�̂1
1|0 const Bias −0.005 

RMSE 1.649 

�̂1
1|0 slope Bias −0.272 

RMSE 5.787 

�̂2
1|0 const Bias −0.218 

RMSE 1.560 

�̂2
1|0 slope Bias −0.027 

RMSE 9.004 

�̂1
0|1 const Bias 0.109 

RMSE 0.964 

�̂1
0|1 slope Bias 0.063 

RMSE 1.342 

�̂2
0|1 const Bias 0.024 

RMSE 0.770 

�̂2
0|1 slope Bias 0.100 

RMSE 1.056 

otes: Cell entries show bias and root mean square error for parameters estimate
h∗), reported SAH (h1), and the Finite Mixture (FM) and Penalised Finite Mixture (
arameter is set to t = 0.5. The true values of the parameters in the DGP are  ̨ = 

,  k, and �1
0|1const=-0.25, �2

0|1const=-0.75, �1
1|0const=0, and �2

1|0const=-0.5. See Ap

22
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naïve estimator using the misreported h1i as a regressor
(“hi”) as well as the FM and PFM estimators, for the two
sample sizes of 1000 and 10,000 observations. The results
for 10,000 observations are the ones presented in Table 1
in the paper.

The FM estimator in samples of N = 1000 is able to
greatly reduce the bias from h1 from 46% to 4% for ˛. In
samples of N = 10,000, the bias is less than 1%. The RMSE in
the DGP with N = 1000 is about twice as large as that of the
infeasible estimator. The other parameters of the outcome
model, ˇ0 and ˇ1, are estimated similarly well.

However, for the parameters of the misclassification
system, at N = 1000, there are larger biases, ranging up
to about 20%; and even when the biases are small, the
RMSE can still be substantial. It is for this issue that we
see the advantages of the PFM estimator most clearly. It
achieves reductions in the RMSE of these parameters that
range from 50% to almost 90%. This improvement in the
estimation of the misclassification parameters also trans-
lates into uniformly lower RMSE in the estimates of the
outcome parameters, and sometimes also in bias reduc-
tions. For the estimate of �, for instance, PFM reduces FM’s
bias of 4% to less than 2%.

Table B2 contains the results for four potential competi-
tor estimators, which address the misclassification in an

ad-hoc way  and are sometimes encountered in the litera-
ture. The top panel corresponds to results for a sample size
of 1000; the bottom panel, to results for a sample size of
10,000. The latter panel is also included in Table 1 in the

N = 10,  000

PFM h∗ h1 FM PFM

0.018 0.002 −0.457 0.008 0.005
0.267 0.050 0.460 0.085 0.083
0.073 −0.002 0.260 −0.010 −0.000
0.247 0.049 0.265 0.118 0.098
−0.012 0.003 0.156 0.012 0.021
0.306 0.084 0.177 0.154 0.124
−0.313 0.036 0.003
0.591 0.393 0.289
−0.002 −0.064 −0.120
0.552 0.517 0.363
−0.064 0.039 0.034
0.349 0.373 0.252
−0.624 0.010 −0.199
0.735 0.612 0.424
0.149 −0.012 0.048
0.351 0.323 0.227
−0.538 0.022 −0.156
0.672 0.547 0.380
0.224 −0.010 0.007
0.395 0.249 0.195
−0.162 0.028 0.031
0.379 0.337 0.246
0.388 −0.029 0.044
0.482 0.235 0.194
−0.342 0.049 −0.016
0.489 0.281 0.221

d over 500 Monte Carlo replications for the estimators using actual SAH
PFM) estimators that adjust for misclassification. For the PFM, the tuning
1,  ̌ const=0,  ̌ slope=1, � const=-0.1342, � slope=1.5, �m

k|jslope = 1 for all

pendix B.1 for more details on the DGP.
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Table  B2
Simulation results: Ad-hoc misclassification approaches.

h∗ h1 h h̄ ĥ1 ê1

N = 1000
ˆ̨ Bias 0.004 −0.459 −0.259 −0.243 0.632 0.675

RMSE 0.152 0.482 0.321 0.307 0.953 0.989
ˆ̌

 const Bias −0.007 0.258 0.162 0.163 −0.262 −0.276
RMSE 0.167 0.303 0.234 0.265 0.452 0.465

ˆ̌
 slope Bias 0.014 0.169 0.152 0.054 −0.138 −0.134

RMSE 0.271 0.317 0.308 0.346 0.359 0.359
N  = 10, 000
ˆ̨  Bias 0.002 −0.457 −0.259 −0.245 0.602 0.643

RMSE  0.050 0.460 0.268 0.253 0.647 0.686
ˆ̌

 const Bias −0.002 0.260 0.165 0.158 −0.245 −0.258
RMSE 0.049 0.265 0.172 0.171 0.272 0.284

ˆ̌
 slope Bias 0.003 0.156 0.141 0.057 −0.144 −0.140

RMSE 0.084 0.177 0.164 0.120 0.179 0.176

N estimate

( tricted t

h  slope=
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otes: Cell entries show bias and root mean square error for parameters 

h∗), reported SAH (h1), the average of h1 and h2 (h), h1 in the sample res

1 (ê1). The true values of the parameters in the DGP are ˛=1,  ̌ const=0, ˇ

aper. Below we give some more detail on these ad-hoc
pproaches.

First, we experiment by using the average of the two
AH measures as the regressor in the models (in tables,
e denote this estimator as“h”). If the measurement error
ere classical, this approach would produce an (unbiased)

AH measure with less measurement error, thus miti-
ating some of the bias. A second simple ad-hoc way of
ddressing the misclassification is to drop all individuals
rom the estimation sample whose second response to the

AH question is different from the first (“h̄”). This leaves a
ample of individuals with what sometimes is called “con-
istent responses”. It is clear that this is also a procedure
eading to biased estimates, since some of the individuals
n such a sample may  have misreported their SAH status
wice. Moreover, this procedure results in a reduced sam-
le size and, therefore, less precise estimates. Nevertheless,
imilar to the averaging of the SAH responses, the severity
f the misclassification problem might be mitigated by this
pproach.

The last two ad-hoc estimators included in the sim-
lation correspond to approaches that mimic  two-stage

east squares in linear models. They consist of using one
AH measure as an instrument for the other. Both estima-
ors use the same first stage in which one SAH measure is
egressed on the other. The first of these estimators then
ncludes the first-stage predictions as the regressor in the

utcome model (“ĥ1”), an inconsistent approach for non-
inear models, but unfortunately often encountered in the
iterature. The second estimator includes the first-stage
esiduals as an additional regressor along the mismeasured

AH response in the outcome model (“ê1”). This is a version
f the control function approach and is valid for nonlinear
odels under certain conditions, but not in general when

he endogenous regressor (here, SAH) is discrete.
The results in Table B2 show that for the two common ad
oc fixes for reducing misreporting bias—averaging the two
vailable measures, and keeping only observations with
he same reported SAH across both measures—the bias in
he estimated  ̨ is about −25% for both estimators. Thus,

23
d over 500 Monte Carlo replications for the estimators using actual SAH

o i with h1i = h2i , predicted h1 (ĥ1) and the residual from a prediction of

1. See Appendix B.1 for more details on the DGP.

these procedures improve over the estimation using a sin-
gle reported measure, but the bias is still very large.

The columns “ĥ1” and “ê1” report the results for the pos-
sible ad hoc methods related to IV estimation. The control
function approach “ê1” has been advocated as a potentially
useful remedy that might not cure the problem but reduce
it in some circumstances even if its assumptions are vio-
lated (Basu and Coe, 2015; Wooldridge, 2014). However, all
estimated parameters, including the slope of x, are very dis-
torted overestimating the true value on average by about
63% and 67%. Thus, such approaches, while well-suited to
measurement error in linear models, cannot be recom-
mended as solutions to the measurement error problem
at hand.

We see that for all these four ad-hoc approaches the esti-
mated root mean squared error (RMSE) is driven primarily
by the bias. As these biases do not vanish with larger sam-
ple sizes, the RMSE approaches the bias as variances shrink
with increasing N.

B.3 Simulation DGP with interaction effect in unobserved
health

The ability to easily specify interaction effects is a hall-
mark of our approach, and in this section we simulate from
a DGP where the impact of SAH on the outcome varies with
x:

yi = 1
(

 ̨h∗
i + ˛xh

∗
i xi + ˇ0 + ˇ1x + εi > 0

)
, (31)

where ˛x is the coefficient on the new interaction between
health and x. Table B3 shows the results from this DGP. The
results for N = 10,  000 (right panel) correspond to Panel (A)
in Table 2 in the paper. Compared to the baseline, this DGP
is more difficult to estimate. For instance, compared to the
RMSE of  ̨ in the baseline case from Table B1 the RMSE at N
= 1000 for the infeasible estimator almost doubles for ˛const
(and quadruples for ˛slope, i.e. the interaction coefficient).
The FM estimator, while still improving substantially over
the naïve approach, displays visible biases. The estimate
of both main and interaction effect of SAH have biases of
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Table  B3
Simulation results: DGP with interaction effect in health.

N = 1000 N = 10,  000

h∗ h1 FM PFM h∗ h1 FM PFM

ˆ̨  const Bias −0.004 −0.606 0.234 −0.020 0.008 −0.596 0.020 0.002
RMSE 0.284 0.669 0.966 0.560 0.090 0.602 0.186 0.177

ˆ̨  slope Bias 0.025 −0.374 −0.251 0.117 −0.011 −0.409 −0.018 0.012
RMSE 0.560 0.660 1.392 0.966 0.178 0.442 0.295 0.286

ˆ̌
 const Bias −0.001 0.326 −0.138 0.055 −0.003 0.324 −0.015 −0.009

RMSE  0.212 0.380 0.820 0.349 0.063 0.330 0.149 0.131
ˆ̌ slope  Bias −0.001 0.508 0.215 −0.007 0.006 0.514 0.018 0.024

RMSE 0.426 0.643 1.161 0.583 0.129 0.528 0.222 0.203

Notes: Cell entries show bias and root mean square error for parameters estimated over 500 Monte Carlo replications for the estimators using actual SAH
( ixture (
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h∗), reported SAH (h1), and the Finite Mixture (FM) and Penalised Finite M
arameter is set to t = 0.5. The true values of the parameters in the DGP are
re  kept at their baseline values (see notes of Table 1); see Appendix B.1 f

bout 25% with N = 1000. However, the PFM estimator is
ble to obtain improved estimates, with biases of about 2
nd 12% for main effect and interaction, yielding reductions
n RMSE of about 50% and 40% relative to FM.  At N = 10,000,
owever, the FM estimator works well and the advantages
f PFM over FM in this DGP are only marginal.

.4 Simulation DGP for multinomial health with five
ategories

Here we present simulation results for models with a
iscrete SAH measure with five categories, h∗ = 0, . . .,  4.
e simulate from the following DGP:

i = 1
(
˛1 h

∗
1i + ˛2 h

∗
2i + ˛3 h

∗
3i + ˛4 h

∗
4i + ˇ0 + ˇ1x + εi > 0

)
, (32)

here we specify  ̨ = (˛1, ˛2, ˛3, ˛4)′ =
0.5, 1.0, 1.5, 2.0)′. The parameters ˇ0 and ˇ1 are
et to −1 and 1. We  specify the misreporting probabilities
s

m
exp(− exp(�m

k|jconst + �m
k|jslope xi))
k|j,i =
1 +

∑
k /=  j

exp(− exp(�m
k|jconst + �m

k|jslope xi))
, for j /= k,

and set all slope parameters equal to 1, �m
k|jslope=1,

nd specify the constants as �m
k|jconst = 0.25|j − k|. The

able B4
imulation results: DGP with multinomial health (h∗ = 0, 1. . .,  4)

N = 1000 

h∗ h1 FM P

ˆ̨ 1 Bias 0.056 −0.298 0.166 0
RMSE 0.392 0.379 0.786 0

ˆ̨ 2 Bias 0.033 −0.521 0.095 0
RMSE 0.301 0.570 0.381 0

ˆ̨ 3 Bias 0.055 −0.741 0.161 0
RMSE 0.307 0.772 0.533 0

ˆ̨ 4 Bias −0.123 −0.926 0.078 0
RMSE 0.285 0.951 0.453 0

ˆ̌ const  Bias −0.026 0.648 −0.123 −
RMSE 0.241 0.670 0.419 0

ˆ̌
 slope Bias 0.110 0.133 0.150 0

RMSE 0.266 0.264 0.275 0

otes: Cell entries show bias and root mean square error for parameters estimate
h∗), reported SAH (h1), and the Finite Mixture (FM) and Penalised Finite Mixture (
arameter is set to t = 0.5. The true values of the parameters in the DGP are  ̨ = 0.
etails on the DGP.
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PFM) estimators that adjust for misclassification. For the PFM, the tuning
=1,  ̨ slope=1,  ̌ const =-0.375,  ̌ slope=1; all misclassification parameters

 details on the DGP.

marginal distribution of unobserved health is specified as
� = (0.10,  0.15, 0.20, 0.25, 0.30) by setting

�ji =
exp(�jconst + �jslope xi)

1 +
∑4

j=1 exp(�jconst + �jslope xi)
,  j = 1, 2, 3, 4,

with slopes equal to 1.0, 2.0, 2.0 and 2.5, and constants
chosen such as to yield the marginal distribution speci-
fied above. This DGP is more challenging not only in that it
has more parameters, but also in that misreporting is much
more prevalent. About 61% of individuals report different
values for h1 and h2. For roughly half of these, 31%, the dis-
crepancy between the first and second SAH measure is 1.
Discrepancies of 2, 3, and 4 occur in 18%, 9%, and 3% of indi-
viduals. The ım

k|j,i vary between about 2% and 20%. To the
best of our knowledge, this is the first simulation evidence
of this type of DGP of a categorical regressor with flexible
effects.

The results of the simulation for the parameters of the
outcome model are collected in Table B4 for N = 1000 (left
panel) and N=10,000 (right panel). Results for the right

panel correspond to those presented in Table 2 in the paper.
Again, that this is a more challenging DGP can be seen in the
biases and RMSE that are apparent in the infeasible estima-
tor. We  see that at N = 1000, FM and PFM show some visible

N = 10,  000

FM h∗ h1 FM PFM

.105 0.017 −0.293 0.039 0.013

.738 0.094 0.302 0.175 0.169

.057 0.005 −0.534 0.028 0.012

.574 0.093 0.539 0.157 0.149

.147 0.003 −0.754 0.019 0.001

.612 0.082 0.758 0.155 0.145

.127 0.003 −0.937 0.027 0.010

.571 0.087 0.940 0.130 0.131
0.082 −0.011 0.660 −0.030 −0.009
.517 0.077 0.662 0.128 0.124
.039 0.005 0.165 0.005 0.019
.278 0.071 0.180 0.073 0.077

d over 500 Monte Carlo replications for the estimators using actual SAH
PFM) estimators that adjust for misclassification. For the PFM, the tuning
5,  ̨ = 1,  ̨ = 1.5,  ̨ = 2,  ̌ const=-1,  ̌ slope=1. See Appendix B.4 for more
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iases, in the order of about 8–16%. However, in the larger
ample size these biases have all but disappeared, with the
aximum bias in FM being less than 4% and that in PFM

ess than 2%.

.5 Simulations for count data and duration data DGPs

Table B5 explores different nonlinear outcome models.
eeping the same values for the parameters as in the base-

ine, we now change the outcome model to one for counts
nd one for durations. The count model is a Poisson regres-
ion model where yi is drawn from a Poisson distribution
ith mean 
i:

i∼Poisson(
Poisi ), 
Poisi = exp(  ̨h∗
i + ˇ0 + ˇ1xi). (33)

or the duration model (yi > 0) we use a Weibull regression
odel with hazard function

Weib
i = exp(  ̨h∗

i + ˇ0 + ˇ1xi)y
ω−1
i

. (34)

he (ancillary) parameter ω determines the form of the
uration dependence. We  set ω = 1.5, which, being larger
han 1, results in positive duration dependence (i.e., all else
qual, the hazard increases with the duration of the spell).
he Poisson results are in the left panel, the Weibull results
n the right panel. We  only report the estimates for the
maller sample of N = 1000. With these models, the pro-
osed estimators perform already very well at the smaller
ample size. For instance, biases are below 1% for all out-

able B5
imulation results: Counts (Poisson) and Durations (Weibull) DGPs.

Poisson, N = 1000 

h∗ h1 FM 

ˆ̨  Bias −0.004 −0.469 0.001 

RMSE 0.049 0.474 0.073 

ˆ̌
 const Bias 0.001 0.197 −0.002 

RMSE 0.055 0.210 0.101 

ˆ̌
 slope Bias 0.005 0.126 −0.001 

RMSE 0.058 0.173 0.085 

�̂  const Bias 0.003 

RMSE 0.316 

�̂  slope Bias 0.009 

RMSE 0.459 

�̂1
1|0 const Bias −0.028 

RMSE 0.483 

�̂1
1|0 slope Bias 0.118 

RMSE 0.880 

�̂2
1|0 const Bias −0.028 

RMSE 0.448 

�̂2
1|0 slope Bias 0.043 

RMSE 0.722 

�̂1
0|1 const Bias −0.022 

RMSE 0.262 

�̂1
0|1 slope Bias 0.034 

RMSE 0.363 

�̂2
0|1 const Bias −0.042 

RMSE 0.366 

�̂2
0|1 slope Bias 0.053 

RMSE 0.485 

otes: Cell entries show bias and root mean square error for parameters estimate
h∗), reported SAH (h1), and the Finite Mixture (FM) and Penalised Finite Mixture (
arameter is set to t = 0.5. The true values of the parameters in the DGP are  ̨ = 

,  k, and �1
0|1const = −0.25, �2

0|1const = −0.75, �1
1|0const = 0, and �2

1|0const = −0.5. Fo
ere  parametrised as described in Appendix B.5. See Appendix B.1 for more deta
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come parameters for FM,  and below 2% for PFM. Clearly,
the estimators benefit from the added information in these
outcomes relative to the sparser case of a binary outcome.
For both Poisson and Weibull the naíve estimates of  ̨ rely-
ing on the observed SAH are biased downwards by roughly
47%.

B.6 Simulation DGP with two outcomes

Next, we consider the case of a multivariate outcome.
In Table B6 we  present results from estimations with two
outcomes, simulated from the specification:

y1i = 1(˛ h∗
i

+ ˇ0 + ˇ1xi + ε1i > 0)
y2i = 1(˛ h∗

i
+ ˇ0 + ˇ1xi + ε2i > 0).

This is a setup in the vein of “seemingly unrelated regres-
sions”. The true coefficients have been specified as having
the same values across the two outcome equations, but
this is merely for convenience and the estimated coeffi-
cients are allowed to vary in estimation (i.e. they are not
constrained to be the same across equations). As explained
previously, the gain from considering y1 and y2 jointly is
that, since the parameters of the misclassification probabil-
ities are the same across both outcomes, we are increasing

the information (statistical power) available to estimate
these parameters. The extent to which pooling both out-
comes adds information depends on the degree of the
dependence between the two  errors, ε1 and ε2 (though

Weibull, N = 1, 000

PFM h∗ h1 FM PFM

−0.008 −0.000 −0.469 0.005 −0.007
0.073 0.072 0.470 0.117 0.113
0.005 0.005 0.191 0.008 0.019
0.095 0.076 0.193 0.141 0.117
0.005 −0.002 0.129 −0.000 0.015
0.077 0.113 0.134 0.198 0.155
0.011 −0.034 −0.065
0.278 0.514 0.375
−0.043 0.036 −0.021
0.403 0.773 0.522
0.113 −0.014 0.115
0.287 0.629 0.317
−0.259 0.137 −0.366
0.482 1.234 0.572
0.209 −0.124 0.198
0.326 0.728 0.338
−0.368 0.211 −0.417
0.549 1.317 0.621
0.063 0.024 0.131
0.217 0.410 0.287
−0.084 −0.002 −0.139
0.299 0.580 0.363
0.156 −0.045 0.209
0.286 0.442 0.334
−0.209 0.072 −0.249
0.390 0.584 0.433

d over 500 Monte Carlo replications for the estimators using actual SAH
PFM) estimators that adjust for misclassification. For the PFM, the tuning
1,  ̌ const=0,  ̌ slope=1, � const=-0.1342, � slope=1.5, �m

k|jslope = 1 for all

r the Weibull DGP, the true value of ω = 1.5. Poisson and Weibull models
ils on the simulation DGP.
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Table  B6
Simulation results: Full results—Multivariate DGP y = (y1, y2)′ , N = 1000

FM PFM

� = 1.00 0.75 0.50 0.25 0.00 1.00 0.75 0.50 0.25 0.00

ˆ̨  Bias 0.059 0.039 0.015 0.007 0.001 0.045 0.029 0.009 0.001 −0.001
RMSE  0.309 0.289 0.283 0.286 0.281 0.284 0.265 0.262 0.266 0.263

ˆ̌
 const Bias 0.007 0.010 0.027 0.033 0.033 0.044 0.044 0.059 0.064 0.065

RMSE  0.354 0.326 0.313 0.312 0.304 0.249 0.233 0.228 0.227 0.230
ˆ̌

 slope Bias 0.004 0.017 0.008 0.003 0.004 0.000 0.011 0.002 0.002 −0.000
RMSE  0.474 0.439 0.423 0.423 0.420 0.338 0.314 0.318 0.315 0.322

�̂  const Bias −0.145 −0.142 −0.153 −0.151 −0.118 −0.242 −0.223 −0.229 −0.229 −0.216
RMSE  1.157 1.093 1.038 1.009 0.987 0.652 0.587 0.578 0.554 0.544

�̂  slope Bias −0.009 0.013 0.028 0.059 0.035 −0.047 −0.047 −0.040 −0.035 −0.034
RMSE  1.562 1.509 1.446 1.400 1.395 0.676 0.643 0.627 0.611 0.613

�̂1
1|0 const Bias −0.093 −0.087 −0.078 −0.121 −0.099 −0.072 −0.060 −0.070 −0.071 −0.061

RMSE  1.601 1.525 1.384 1.385 1.321 0.444 0.412 0.394 0.378 0.372
�̂1

1|0 slope Bias 0.019 0.025 0.057 0.163 0.214 −0.479 −0.467 −0.454 −0.442 −0.435
RMSE  2.811 2.756 2.594 2.519 2.477 0.741 0.726 0.706 0.696 0.684

�̂2
1|0 const Bias −0.201 −0.267 −0.257 −0.297 −0.216 0.114 0.116 0.117 0.114 0.118

RMSE  1.645 1.939 1.598 1.998 1.466 0.455 0.414 0.406 0.394 0.387
�̂2

1|0 slope Bias 0.297 0.368 0.339 0.417 0.312 −0.436 −0.426 −0.434 −0.435 −0.424
RMSE  2.525 2.767 2.500 2.842 2.371 0.717 0.687 0.685 0.679 0.660

�̂1
0|1 const Bias 0.094 0.114 0.108 0.096 0.073 0.148 0.131 0.130 0.131 0.125

RMSE  0.960 0.964 0.894 0.871 0.846 0.454 0.403 0.387 0.380 0.371
�̂1

0|1 slope Bias 0.066 0.015 0.026 0.027 0.054 −0.048 −0.041 −0.042 −0.045 −0.047
RMSE  1.310 1.287 1.235 1.209 1.214 0.489 0.459 0.451 0.447 0.443

�̂2
0|1 const Bias 0.068 0.048 0.038 0.030 0.012 0.291 0.276 0.281 0.276 0.265

RMSE  0.774 0.710 0.691 0.701 0.640 0.474 0.447 0.440 0.427 0.413
�̂2

0|1 slope Bias 0.050 0.058 0.063 0.062 0.070 −0.225 −0.219 −0.227 −0.226 −0.220
RMSE  1.044 0.960 0.950 1.014 0.872 0.497 0.481 0.478 0.470 0.461
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otes: Cell entries show bias and root mean square error for parameters e
h∗), reported SAH (h1), and the Finite Mixture (FM) and Penalised Finite M
arameter is set to t = 0.5. See Appendices B.1 and B.6 for more details on

his dependence is not estimated with our method). In
he worst case, ε1 = ε2 and joint estimation will bring no
dvantage. Since the DGP is symmetric for y1 and y2, we
nly present estimates for equation y1. The table presents
esults for N=1,000 for the cases where the correlation
etween the errors ε1 and ε2 is equal to 1, 0.75, 0.50, 0.25,
nd 0.

The case � = 1 is the same as the baseline, and indeed
e get very similar results. For both FM and PFM, as the

orrelation decreases, the estimators in general become
rogressively more successful at reducing the biases,
lthough not uniformly (the bias in ˆ̌ 0 increases, for
nstance). However, the RMSE is reduced in all cases, with
he magnitude of the reduction for FM ranging from about
0% to 20%. Similar although often somewhat larger reduc-
ions in RMSE are achieved for the parameters of the

isclassification system.

.7 Performance of FM and PFM in a misspecified DGP

So far we have evaluated the performance of the FM and
FM estimators in DGPs where they correctly specify the
isclassification system. Here, the proposed parametric

stimators are evaluated in a DGP where the misclassi-
cation probabilities are misspecified. We  use the same
GP of Hu (2008), and also compare our estimator against
he nonparametric instrumental variables (NPIV) estima-
or introduced in that paper. We  have argued that the
M/PFM estimators may  have two potential advantages
espite the drawback of fully specifying the functional form

26
d over 500 Monte Carlo replications for the estimators using actual SAH
PFM) estimators that adjust for misclassification. For the PFM, the tuning
P.

of the misclassification probabilities and the unobserved
health distribution. First, by using flexible specifications
of the linear indices x′

i
�m
k|j , many functional forms may  be

approximated well. Second, compared to more nonpara-
metric approaches, even if FM/PFM might be inconsistent
due to misspecified functional forms, they might still be
preferable in terms of RMSE for finite samples. This simula-
tion gives some evidence of the second point. That is, we  do
not explore potential further improvements by specifying
polynomials of xi in the linear indices.

In the DGP from Hu (2008), misclassification does not
follow our logit-based functional forms. Rather, some mis-
classification probabilities, for instance, are partially linear
functions with kinks. Table B7 shows our results for FM
and PFM from this DGP, with N = 500 and 200 replications
as in the original Hu (2008) paper, next to the h∗

i
, h1 and

Hu (2008) NPIV results from their paper. Scenarios 1 and 2
depicted in the table correspond to two  variants of the DGP
in which the probabilities ım0|1 depend negatively (Scenario
1) or positively (Scenario 2) on the regressor xi.

While NPIV substantially reduces the bias of the naïve
estimator, for instance from about 50% to 12% for ˆ̨  in Sce-
nario 1, FM and PFM reduce the bias even further, and they
also have the lowest RMSE of the feasible estimators pre-
sented. It could be that the good results of FM and PFM
were achieved by chance: small sample bias and misspeci-

fication bias could be offsetting each other, yielding the low
biases observed in the table. To check whether this was the
case, we repeated the simulations for N = 10,000 for PFM
in Scenario 2. This resulted in biases of −0.001, 0.001, and
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Table  B7
Simulation results: Misspecified functional form of misclassification, N = 500.

Scenario 1 Scenario 2

h∗ h1 NPIV FM PFM h∗ h1 NPIV FM PFM

ˆ̨  Bias 0.012 −0.520 −0.124 0.087 0.070 0.015 −0.491 −0.108 0.062 0.070
RMSE 0.157 0.538 0.409 0.309 0.375 0.160 0.509 0.318 0.253 0.233

ˆ̌ const  Bias 0.000 0.275 0.061 −0.012 0.008 −0.001 0.263 0.052 0.006 −0.016
RMSE 0.104 0.290 0.238 0.138 0.129 0.104 0.279 0.205 0.132 0.137

ˆ̌
 slope Bias −0.011 −0.150 −0.138 0.014 0.020 −0.014 −0.094 −0.071 0.015 0.017

RMSE  0.165 0.210 0.332 0.220 0.230 0.165 0.176 0.307 0.234 0.197

Notes: Cell entries show bias and root mean square error for parameters estimated over 200 Monte Carlo replications for the estimators using actual SAH
(h∗), reported SAH (h1), the Nonparametric IV estimator from Hu (2008) (NPIV), the Finite Mixture (FM) and Penalised Finite Mixture (PFM) estimators. For
t taken fr
i  const =
n
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he  PFM, the tuning parameter is set to t = 0.5. For NPIV, the results are 

n  Appendix B.7. The true values of the parameters in the DGP are ˛=1, ˇ
egatively on x; in Scenario 2, positively.

0.016 for ˆ̨ , ‘ ˆ̌
 const’ and ‘ ˆ̌

 slope’, thus dispelling the con-
ern that an equal and opposite small sample bias might be
oncealing what potentially could be large misspecification
iases. It also highlights that the bias due to incorrect func-
ional form of the misclassification in this case is already
mall.

Details on the DGP
We  use the setup of Hu (2008) as reported in Hu

2008, Table 1, p.45). The DGP is for a probit outcome yi,
 binary misclassified regressor h∗

i
, and a normally dis-

ributed covariate xi. We  adjust our outcome model to be a
robit, but leave the misclassification probabilities and �i
s logistic, while in the DGP they are not. Specifically, the
GP is

(yi = 1|h∗
i , xi) = �(˛h∗

i + ˇ0 + ˇ1xi),

here �(  · ) denotes the standard normal CDF, ˛=1, ˇ0=0.5
nd ˇ1 = 1, and xi∼N(0, 0.25). Health status is defined
s h∗

i
= 1(ε < 0.6), where ε∼Uniform(0, 1). The reported

ealth measures h1 and h2 are defined as follows: h2i =
(ε + ı < 0.6), where ı∼N(0.0.04). For h1i,

P(h1i = 0|h∗
i = 1, xi) = min(1,  max(0,  pi)),

P(h1i = 1|h∗
i = 0, xi) = min(1,  max(0,  qi)).

n Table B7, for results in Panel “Scenario 1”,

pi = 0.3 − 0.1xi,
qi = 0.2 + 0.1xi;

nd for results in Panel “Scenario 2”,

pi = 0.3 + 0.1xi,
qi = 0.2 + 0.1xi.

.8 Sensitivity of PFM to the conditional independence
ssumption

To explore the sensitivity of the proposed estimator
o violations of the conditional independence assumption
CIA), we produce the following experiment. We  generate
he data from a process where the population consists of

wo groups with different levels of misclassification, but
roup membership is ignored by the econometrician. This
nduces dependence between the reported health mea-
ures through the unobserved group membership—thus

27
om Hu (2008). The DGP is that from (Hu, 2008, Table 1, p.45) and given
 0.5,  ̌ slope = 1. In Scenario 1, the misclassification probabilities depend

violating CIA—and corresponds to the omission of a dummy
variable from the covariate vector of the misclassification
probabilities.

To implement this we  modify the baseline DGP by
adding a second regressor to the specification of the mis-
reporting probabilities

ımk|j = �(− exp(�mk|j,const + �mk|j,x xi + �mk|j,d di)),

m = 1, 2, j /= k = 0, 1,

where di is the binary regressor omitted in estimation.
Both outcomes of the regressor are equally likely and we
set all slope coefficients of di equal to 0.5. All remaining
parameters of the model are left at baseline values (see
B.1 for details). The neglected regressor thus has a sub-
stantial effect on the misclassification; the variance of the
neglected regressor (�m

k|j,ddi) is 0.0625, which is close to the
variance of the included regressor (�m

k|j,xxi), 0.0833. Finally,
in order to make the DGP comparable to the baseline DGP,
we recentre �m

k|j,ddi around zero. In this way, average levels
of misclassification marginal of di (i.e., omitting di) are the
same as in the baseline. Otherwise, any differences we find
between this DGP and the baseline could be due to varia-
tion in the total amount of misclassification between the
two  DGPs.

The results of the Monte Carlo simulation with N = 1000
are shown in Table B8. Columns (1)-(3) give results for
the baseline case (which is obtained by setting �m

k|j,d = 0),
for the infeasible, naive and PFM estimators. As is to be
expected, these results are virtually identical to the ones in
Table B1 (N = 1000). The next three columns (4–6) depict
bias and RMSE for the DGP with a common omitted vari-
able in h1 and h2, thus violating CIA. The results show that
despite the omission of the unobserved regressor, the per-
formance is not meaningfully different to the baseline case.

Next, we  aggravate the problem of omitted variables, by
adding the unobserved regressor di to the specification of
the outcome equation,

yi = 1
(

 ̨h∗
i + ˇ0 + ˇ1xi + ˇ2di + εi > 0

)
,

where, as before, we  set the slope coefficient of di to ˇ2 =

0.5 and recentre the neglected part of the linear index
to zero. The results for this DGP, where the econometri-
cian has failed to include di in estimation, are depicted
in Columns (7)–(9). Again, the performance of PFM (and
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Table  B8
Sensitivity to conditional independence assumption (CIA), N = 1000.

Violation of CIA through omitted variable in:

No omitted variable (h1, h2) (h1, h2, y) (h1, h2, h∗, y)

h∗ h1 PFM h∗ h1 PFM h∗ h1 PFM h∗ h1 PFM
(1)  (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Parameters of the outcome model
ˆ̨  Bias 0.006 −0.464 0.035 0.010 −0.460 −0.002 −0.008 −0.462 0.005 −0.063 −0.490 −0.058

RMSE  0.164 0.490 0.256 0.151 0.486 0.258 0.144 0.487 0.254 0.157 0.515 0.257
ˆ̌

 const Bias 0.007 0.277 0.056 −0.029 0.239 0.065 −0.037 0.224 0.081 −0.005 0.248 0.120
RMSE  0.152 0.314 0.242 0.158 0.280 0.210 0.156 0.265 0.214 0.153 0.287 0.222

ˆ̌
 slope Bias 0.016 0.167 −0.018 0.045 0.201 0.026 0.053 0.204 −0.001 0.063 0.201 0.008

RMSE  0.283 0.326 0.321 0.275 0.323 0.293 0.276 0.323 0.291 0.275 0.321 0.289
Parameters of the misclassification probabilities
�̂ const Bias −0.253 −0.287 −0.384 −0.424

RMSE  0.551 0.531 0.584 0.609
�̂  slope Bias −0.039 −0.041 −0.022 −0.010

RMSE  0.538 0.499 0.491 0.491
�̂11|0  const Bias −0.017 −0.028 −0.081 −0.066

RMSE  0.367 0.333 0.330 0.331
�̂11|0  slope Bias −0.607 −0.574 −0.618 −0.631

RMSE  0.729 0.721 0.758 0.761
�̂21|0  const Bias 0.147 0.170 0.114 0.126

RMSE  0.370 0.360 0.337 0.334
�̂21|0  slope Bias −0.516 −0.554 −0.588 −0.561

RMSE  0.636 0.678 0.708 0.677
�̂10|1  const Bias 0.206 0.283 0.339 0.336

RMSE  0.397 0.441 0.482 0.480
�̂10|1  slope Bias −0.136 −0.208 −0.222 −0.220

RMSE  0.357 0.413 0.417 0.427
�̂20|1  const Bias 0.385 0.407 0.446 0.451

RMSE  0.478 0.493 0.527 0.531
�̂20|1  slope Bias −0.379 −0.343 −0.360 −0.365

RMSE  0.504 0.494 0.509 0.509
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Tables C1–C5
otes: Cell entries show bias and root mean square error for parameters e
h∗), reported SAH (h1), and Penalised Finite Mixture (PFM) estimators. 

4)–(12) include as a covariate an indicator variable which is omitted from

he other estimators) is not materially different from the
aseline case (1)–(3) where CIA holds.

A final specification includes the regressor di also in the
istribution for unobserved health, h∗

i
, whose distribution

s now

i = �(�0 + �1xi + �2di),

ith �2 = 0.5 and �2di centred on zero. The results
Columns 10–12) show that there is a modest increase in
he absolute value of the bias of PFM for the key parame-
er  ̨ from 3.5% to 5.8%. Because di is now directly related
o the unobserved health h∗, neglecting di leads to a classi-
al omitted-variables-bias situation. This can be seen in the
act that the infeasible regressor, which includes h∗ but also
mits di, is equally biased, with a bias (in absolute value)
f 6.3%.

To summarise, the simulations show that the PFM
pproach is reasonably robust to some forms of viola-
ions to the conditional independence assumption (CIA).
n particular, just omitting an important regressor that
nfluences only the reporting of health but is unrelated
o other regressors, health and the outcome, is unlikely to

ias key parameters. An important class of practical exam-
les of such regressors are the many types of interviewer
ffects and survey effects. The approach is also reasonably
obust to the case in which, apart from reporting, an unob-

28
d over 200 Monte Carlo replications for the estimators using actual SAH
PFM, the tuning parameter is set to t = 0.5. The DGPs used in columns
tion. See Appendices B.8 and B.1 for details.

served regressor also affects the outcome. If, however, the
neglected regressor also impacts health, this will bias the
coefficients of the outcome equation, but biases are not
substantially worse than those that an infeasible estimator
would suffer.

From a practical perspective, this is an important lesson,
since it suggests that such violations to CIA result in sim-
ilar biases than would be obtained if health was  observed
without potential misclassification. Thus the differences in
estimates can be thought of in terms of short versus long
regressions (Angrist and Pischke, 2009), that is, in terms of
partial effects of regressors in conditional versus marginal
models, rather than in terms of biases.

We expect similar results if the omitted regressors are
correlated to the included regressors, xi. In that case, differ-
ences in estimates would extend to the slope parameters
of the misclassification probabilities and of h∗, but, again,
they would largely remain interpretable as (approximate)
relationships of the marginal or short model.

Appendix C. Additional estimation results
Figs. C1–C3.
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Table  C1
Sensitivity to tuning parameter. Outcome:Dead.

(1) (2) (3) (4) (5) (6)
Tuning  parameter t = 0.25 0.50 1.00 1.50 2.00 3.00

˛1 −0.79** −0.80** −0.80** −0.80** −0.81** −0.82**
(0.14) (0.14) (0.14) (0.14) (0.14) (0.14)

˛2 −1.13** −1.13** −1.13** −1.14** −1.14** −1.15**
(0.15) (0.15) (0.15) (0.15) (0.15) (0.15)

˛3 −1.45** −1.46** −1.46** −1.46** −1.46** −1.47**
(0.16) (0.16) (0.16) (0.16) (0.16) (0.16)

˛4 −1.76** −1.77** −1.77** −1.78** −1.79** −1.81**
(0.20) (0.20) (0.21) (0.21) (0.21) (0.21)

Age  −3.90** −3.90** −3.90** −3.90** −3.90** −3.90**
(1.56) (1.56) (1.56) (1.56) (1.56) (1.56)

Agesq  13.20** 13.20** 13.20** 13.20** 13.21** 13.22**
(1.44) (1.44) (1.44) (1.44) (1.44) (1.44)

Male  0.58** 0.58** 0.58** 0.58** 0.58** 0.58**
(0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

Educ  −0.12 −0.12 −0.12 −0.12 −0.12 −0.11
(0.22) (0.22) (0.22) (0.22) (0.22) (0.22)

Lnehi  −0.10* −0.10* −0.10* −0.10* −0.10* −0.10*
(0.06) (0.06) (0.06) (0.06) (0.06) (0.06)

Condi  0.27** 0.27** 0.27** 0.27** 0.27** 0.27**
(0.09) (0.09) (0.09) (0.09) (0.09) (0.09)

Married −0.38** −0.38** −0.38** −0.38** −0.38** −0.38**
(0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

Overseas −0.24** −0.24** −0.24** −0.24** −0.24** −0.25**
(0.09) (0.09) (0.09) (0.09) (0.09) (0.09)

Nlf  0.07 0.07 0.06 0.06 0.06 0.06
(0.11) (0.11) (0.11) (0.11) (0.11) (0.11)

Unemp 0.07 0.07 0.07 0.07 0.07 0.07
(0.25) (0.25) (0.25) (0.25) (0.25) (0.25)

Smoker 0.60** 0.60** 0.60** 0.60** 0.60** 0.60**
(0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

N  12,908 12,908 12,908 12,908 12,908 12,908

Source: HILDA waves 1 and 16, own calculations. See notes in Table 6 for more information.
* p < 0.10.

** p < 0.05.

Table C2
Sensitivity to tuning parameter. Outcome:Chronic cond.

(1) (2) (3) (4) (5) (6)

Tuning parameter t = 0.25 0.50 1.00 1.50 2.00 3.00
˛1 −0.16 −0.15 −0.15 −0.14 −0.14 −0.12

(0.17) (0.17) (0.17) (0.17) (0.17) (0.17)
˛2 −0.41** −0.41** −0.40** −0.40** −0.40** −0.38**

(0.17) (0.17) (0.17) (0.17) (0.17) (0.17)
˛3 −0.72** −0.71** −0.71** −0.71** −0.70** −0.69**

(0.17) (0.18) (0.18) (0.18) (0.18) (0.18)
˛4 −1.12** −1.11** −1.11** −1.10** −1.10** −1.08**

(0.20) (0.20) (0.20) (0.20) (0.20) (0.20)
Age  6.28** 6.28** 6.29** 6.29** 6.29** 6.30**

(1.39) (1.39) (1.39) (1.39) (1.39) (1.39)
Agesq  −3.08** −3.08** −3.08** −3.09** −3.09** −3.10**

(1.49) (1.49) (1.49) (1.49) (1.49) (1.49)
Male  −0.12* −0.12* −0.12* −0.12* −0.12* −0.12*

(0.07) (0.07) (0.07) (0.07) (0.07) (0.07)
Educ  −0.52** −0.52** −0.52** −0.52** −0.52** −0.52**

(0.18) (0.18) (0.18) (0.18) (0.18) (0.18)
Lnehi  −0.17** −0.17** −0.17** −0.17** −0.17** −0.17**

(0.06) (0.06) (0.06) (0.06) (0.06) (0.06)
Condi  0.39** 0.39** 0.39** 0.39** 0.39** 0.39**

(0.09) (0.09) (0.09) (0.09) (0.09) (0.09)
Married −0.14* −0.14* −0.14* −0.14* −0.14* −0.14*

(0.08) (0.08) (0.08) (0.08) (0.08) (0.08)
Overseas −0.05 −0.05 −0.05 −0.05 −0.05 −0.05

(0.08) (0.08) (0.08) (0.08) (0.08) (0.08)
Nlf  0.13 0.13 0.13 0.13 0.13 0.13

(0.09) (0.09) (0.09) (0.09) (0.09) (0.09)
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Table  C2 (Continued)

(1) (2) (3) (4) (5) (6)

Unemp 0.31* 0.31* 0.31* 0.31* 0.31* 0.30*
(0.17) (0.17) (0.17) (0.17) (0.17) (0.17)

Smoker 0.29** 0.29** 0.29** 0.29** 0.29** 0.29**
(0.07) (0.07) (0.07) (0.07) (0.07) (0.07)

N  7340 7340 7340 7340 7340 7340

Source: HILDA waves 1 and 16, own calculations. See notes in Table 6 for more information.
* p < 0.10.

** p < 0.05.

Table C3
Estimation results: Specification with discretised continuous variables.

Dep. var. Dead Chronic cond.

PFM Diff. to naïve PFM Diff. to naïve

h1 h2 h1 h2

(1) (2) (3) (4) (5) (6)

˛1 −0.78** −0.08 −0.17* −0.16 −0.00 −0.23**
(0.13) (0.06) (0.09) (0.17) (0.10) (0.11)

˛2 −1.12** −0.14** −0.22** −0.44** 0.00 −0.23**
(0.14) (0.06) (0.08) (0.17) (0.09) (0.10)

˛3 −1.45** −0.16** −0.20** −0.74** −0.03 −0.26**
(0.15) (0.07) (0.08) (0.17) (0.09) (0.10)

˛4 −1.72** −0.25** −0.25** −1.14** −0.17* −0.37**
(0.20) (0.11) (0.10) (0.20) (0.10) (0.11)

Age:  30s 1.27** −0.00 0.01 0.56** 0.01 0.01**
(0.26) (0.01) (0.01) (0.13) (0.00) (0.01)

Age:  40s 1.66** −0.01* −0.02* 0.86** −0.01 −0.01
(0.25)  (0.01) (0.01) (0.12) (0.01) (0.01)

Age:  50s 2.41** −0.03** −0.02 1.08** −0.00 0.01
(0.24) (0.01) (0.01) (0.13) (0.01) (0.01)

Age:  60s 3.61** −0.01 0.01 1.43** −0.02** 0.01
(0.24) (0.01) (0.01) (0.14) (0.01) (0.01)

Age:  70 plus 5.16** −0.04** 0.03** 1.72** −0.05** 0.00
(0.24) (0.01) (0.01) (0.17) (0.01) (0.01)

Male  0.58** 0.00 −0.02** −0.15** 0.00 −0.01**
(0.08) (0.01) (0.01) (0.07) (0.00) (0.00)

Education: year 12 0.14 0.04** 0.04** −0.10 0.02** 0.02**
(0.14) (0.01) (0.01) (0.11) (0.01) (0.01)

Education: certificate −0.13 0.00 −0.00 −0.03 −0.01 −0.01
(0.09)  (0.01) (0.01) (0.08) (0.01) (0.00)

Education: bachelor −0.07 0.01 −0.01 −0.31** 0.00 −0.01
(0.13)  (0.01) (0.01) (0.11) (0.01) (0.01)

HH  income, 2nd quint. −0.06 −0.01 −0.00 −0.25** −0.01* −0.00
(0.10)  (0.01) (0.01) (0.11) (0.01) (0.01)

HH  income, 3rd quint. −0.13 −0.00 0.01 −0.22** −0.00 0.01*
(0.12) (0.01) (0.01) (0.11) (0.01) (0.01)

HH  income, 4th quint. −0.03 0.02** 0.03** −0.23** 0.00 0.01**
(0.12) (0.01) (0.01) (0.11) (0.01) (0.01)

HH  income, 5th quint. −0.26* 0.04** 0.04** −0.29** 0.03** 0.03**
(0.14) (0.01) (0.01) (0.12) (0.01) (0.01)

Chronic condition 0.30** −0.06** −0.08** 0.40** −0.02 −0.06**
(0.09) (0.02) (0.02) (0.09) (0.02) (0.01)

Married −0.53** −0.01* 0.00 −0.11 −0.01* −0.00
(0.08)  (0.01) (0.01) (0.08) (0.00) (0.00)

Overseas −0.24** 0.00 0.02** −0.02 0.01* 0.01**
(0.08) (0.01) (0.01) (0.08) (0.01) (0.00)

Not  in labour force 0.20* −0.03** −0.05** 0.11 −0.00 −0.02**
(0.11) (0.01) (0.01) (0.09) (0.01) (0.01)

Unemployed 0.05 −0.03* −0.01 0.27 −0.02 −0.01
(0.26)  (0.02) (0.01) (0.17) (0.01) (0.01)

Smoker 0.49** −0.00 0.01 0.30** −0.00 0.00
(0.08) (0.01) (0.01) (0.07) (0.00) (0.00)

N  12,908 12,908 12,908 7340 7340 7340

Notes: Source: HILDA waves 1 and 16, own calculations. See notes in Table 6 for more information.
* p < 0.10.

** p < 0.05.
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Table  C4
Descriptive statistics for additional discretised variables.

Variable N Mean Std.Dev.

Covariates (Wave 1)
Age: 30s (=1 if 30 years≤age< 40 years) 12,908 0.209 0.407
Age:  40s (=1 if 40 years≤age< 50 years) 12,908 0.200 0.400
Age:  50s (=1 if 50 years≤age< 60 years) 12,908 0.150 0.358
Age:  60s (=1 if 60 years≤age< 70 years) 12,908 0.102 0.303
Age:  70 plus (=1 if age≥ 70 years) 12,908 0.101 0.301
Education: year 12 (=1 if highest education Year 12) 12,908 0.145 0.353
Education: certificate (=1 if highest education certificate) 12,908 0.256 0.437
Education: bachelor (=1 if highest education bachelor or higher) 12,908 0.178 0.382
HH  income, 2nd quint. (=1 if HH income in 2nd quintile) 12,908 0.200 0.400
HH  income, 3rd quint. (=1 if HH income in 3rd quintile) 12,908 0.200 0.400
HH  income, 4th quint. (=1 if HH income in 4th quintile) 12,908 0.200 0.400
HH  income, 5th quint. (=1 if HH income in 5th quintile) 12,908 0.200 0.400

Notes: Source: HILDA waves 1.

Table C5
Estimation results: System PFM specifications with interactions in health (and difference to naïve estimator using h1).

Interaction w. education

Dead diff. Cond. diff.

Educ −0.43 −0.11 −3.15** −1.06*
(0.76) (0.14) (1.07) (0.55)

˛1: educ 0.28 −0.07 3.49** 1.32*
(0.90) (0.26) (1.16) (0.68)

˛1: cons −1.12 0.03 −4.37** −1.57*
(1.09) (0.32) (1.41) (0.81)

˛2: educ 0.43 0.46* 2.66** 1.17**
(0.83) (0.24) (1.10) (0.58)

˛2: cons −1.64 −0.65** −3.61** −1.37*
(1.02) (0.30) (1.34) (0.70)

˛3: educ 0.38 −0.05 2.57** 0.97*
(0.85) (0.26) (1.10) (0.58)

˛3: cons −1.91* −0.04 −3.80** −1.15
(1.05) (0.34) (1.34) (0.71)

˛4: educ −0.02 0.05 2.49** 1.12*
(1.03) (0.37) (1.18) (0.64)

˛4: cons −1.70 −0.27 −4.09** −1.49*
(1.29) (0.48) (1.45) (0.78)

N  12,908 12,908 7340 7340

Interaction w.  log HH income

Dead diff. Cond. diff.

Lnehi −0.16 0.05 −0.19 −0.07
(0.18) (0.04) (0.24) (0.11)

˛1: lnehi 0.14 0.05 0.07 0.08
(0.21) (0.07) (0.27) (0.13)

˛1: cons −1.18** −0.19 −0.35 −0.22
(0.58) (0.18) (0.79) (0.36)

˛2: lnehi 0.01 −0.06 0.01 0.09
(0.20) (0.06) (0.26) (0.12)

˛2: cons −1.15** 0.09 −0.43 −0.24
(0.56) (0.17) (0.75) (0.34)

˛3: lnehi 0.03 −0.03 0.01 0.08
(0.21) (0.08) (0.26) (0.12)

˛3: cons −1.51** −0.02 −0.74 −0.24
(0.60) (0.23) (0.76) (0.34)

˛4: lnehi 0.18 −0.09 −0.05 0.08
(0.28) (0.12) (0.29) (0.13)

˛4: cons −2.31** 0.04 −0.95 −0.39
(0.87) (0.38) (0.88) (0.40)

N  12,908 12,908 7340 7340
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Table  C5 (Continued)

Interaction w. male

Dead diff. Cond. diff.

Male 0.55** −0.04 −0.17 −0.04
(0.24) (0.05) (0.30) (0.12)

˛1: male −0.10 −0.03 0.18 0.07
(0.28) (0.09) (0.34) (0.16)

˛1: cons −0.74** −0.04 −0.24 −0.03
(0.21) (0.06) (0.23) (0.12)

˛2: male 0.26 0.17** −0.20 0.01
(0.27) (0.09) (0.32) (0.13)

˛2: cons −1.27** −0.19** −0.34 0.01
(0.22) (0.07) (0.23) (0.11)

˛3: male 0.03 −0.05 0.11 0.08
(0.29) (0.11) (0.32) (0.13)

˛3: cons −1.46** −0.08 −0.77** −0.05
(0.23) (0.09) (0.23) (0.11)

˛4: male −0.63* −0.20 0.55 0.25
(0.38) (0.16) (0.37) (0.16)

˛4: cons −1.43** −0.13 −1.37** −0.29**
(0.28) (0.12) (0.27) (0.13)

N  12,908 12,908 7340 7340

Interaction w.  age

Dead diff. Cond. diff.

Age −3.18 −4.19 9.04 1.76
(6.44) (3.30) (7.38) (3.96)

Agesq  13.17** 3.48 −8.47 −1.92
(5.70) (2.66) (7.61) (3.78)

˛1: age 0.86 4.90 −3.62 −1.56
(7.33) (4.52) (7.96) (5.22)

˛1: agesq −1.47 −4.12 4.72 1.56
(6.43) (3.67) (8.22) (5.07)

˛1: cons −0.76 −1.46 0.38 0.35
(2.06) (1.36) (1.88) (1.30)

˛2: age 1.83 3.00 −2.47 −2.73
(6.99) (3.57) (7.71) (5.50)

˛2: agesq −2.18 −2.44 5.19 3.01
(6.19) (2.96) (7.96) (5.34)

˛2: cons −1.38 −0.97 −0.52 0.60
(1.95) (1.06) (1.82) (1.36)

˛3: age −4.55 3.51 −3.01 −1.55
(6.95) (3.61) (7.73) (6.82)

˛3: agesq 3.63 −2.92 6.65 1.81
(6.25) (3.05) (8.00) (6.66)

˛3: cons −0.10 −1.10 −0.91 0.31
(1.90) (1.05) (1.82) (1.68)

˛4: age −0.43 7.64* −6.67 −3.73
(8.05) (4.08) (8.19) (10.13)

˛4: agesq −0.13 −6.61* 9.83 3.76
(7.31) (3.51) (8.53) (10.14)

˛4: cons −1.44 −2.28* −0.37 0.70
(2.17) (1.17) (1.91) (2.39)

N  12,908 12,908 7340 7340

S
tandard errors in parentheses.

* p < 0.10.

** p < 0.05.
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Fig. C1. Misclassification in SAH for low and high income individuals. Notes: Estimates from HILDA data waves 1 and 16 for individuals who responded to
S
d
i

AH  questions in wave 1. In Panel (a), high income individuals are those in the to
istribution of equivalised yearly household income. In Panel (b), predicted prob

ncome of the top quintile (High income) and the mean income of the bottom inc

33
p quintile and low income individuals those in the bottom quintile of the
abilities are averaged over the whole sample and evaluated at the mean
ome (Low income).
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F
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p

ig. C2. Misclassification in SAH for old and young individuals. Notes: Estimates
uestions in wave 1. In Panel (a), old individuals are those over the age of 70 yea
redicted probabilities are averaged over the whole sample and evaluated at age

34
 from HILDA data waves 1 and 16 for individuals who  responded to SAH
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Fig. C3. Misclassification in SAH for individuals with high and low education. Notes: Estimates from HILDA data waves 1 and 16 for individuals who
r
a
s

esponded to SAH questions in wave 1. In Panel (a), high education individuals a
nd  low education individuals those whose highest degree is Year 12 (education
ample and evaluated at education = 16 (High education) and education = 12 (Low

35
re those whose highest education degree is a bachelor (education = 16)
 = 12). In Panel (b), predicted probabilities are averaged over the whole

 education).
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