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Abstract

This paper studies linearized spatial structural gravity models of bilateral trade
a la Behrens, Ertur and Koch (2012). We show that these models do in fact not
require spatial econometric methods for estimation. This result follows from the
nature of the specific spatial weights matrix, and from the exporter- or importer-
specific nature of some regressors and the approximation error. All structural model
parameters are identified from a linear regression that uses a spatial lag of the
dependent variable as a control function.
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1 Introduction

The gravity equation — describing aggregate demand for goods or services between any
pair of countries — is among the most successful concepts in all of economics (see Leamer
and Levinsohn, 1995). It is derived from utility maximization subject to income con-
straints and it can be represented for exporter ¢ and importer j as
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where Z;; are aggregate bilateral exports, X;;, which are normalized by exporter and
importer GDP, Y; and Y}, respectively, W; are wages or producer prices, T;; are bilateral
trade costs, L; is population or size of the labor force (see Arkolakis, Costinot and
Rodriguez-Clare, 2012). Equation (1) shows that the log of Z;;, 2, is a log-nonlinear
function of {Wj;T;;; L;}. The parameter a = (—00,0) (see Dixit and Stiglitz, 1977)
reflects the partial response of trade with respect to changes in trade costs. Through (1),
upon choice of a numéraire wage and for a given «, N — 1 values of W, are determined
as implicit functions of all the N values of L; and all the N? values of T35. The model
has a representation which nests a variety of isomorphic structural models of aggregate
bilateral demand such as endowment-economy, Ricardian, and monopolistic-competition-
increasing-returns-to-scale (see Eaton and Kortum, 2002; Anderson and van Wincoop,
2003; Arkolakis, Costinot and Rodriguez-Clare, 2012; Bergstrand, Egger and Larch, 2013;
Baltagi, Egger and Pfaffermayr, 2015), hence its popularity. Its (log-)nonlinear structure
is the main reason why gravity equations are estimated rarely in their structural form
as in (1) but practitioners use either country fixed effects, which may be inefficient, or
linear approximations in estimation. Behrens, Ertur and Koch (2012, henceforth BEK)
present such an approximation around the point o = 0, which leads to a spatial model.
The purpose of this paper is to analyze this approximation.

2 The BEK spatial structural gravity model

2.1 Model outline

Define world population L = Z]k;V:1 Lj and the N x N matrices Wy which in column
Jj contains the same elements L;/L in all the rows, Dyy = diagn(L;/L) which contains
the diagonal elements of Wy, WNN = Wyxn — Dypn, and Inyy which is an identity
matrix. Let us generally use the convention that lower-case letters refer to variables
in logs and refer to N-size vectors and matrices by subscripts N and NN, respectively.
Stacking all observations across exporters ¢ for a given importer j in zjny = (2i;) In = (1),
wy = (w;) and t;n = (t;;), BEK arrive at the log-transformed and linearized counterpart
to (1):

zin = oWnnzin + (@ —1)(In +wn) + a(Iny — WNN)EN + ujn, (2)



where u; is an approximation error due to linearization, which only varies across j but
not 7.1 It is customary in empirical work to specify tij = ZhH:1 Yndhij, where dj, ;; are
observable variables such as bilateral log-distance. What is then estimated on dj;; are
the compound parameters ay,. The reduced form to (2) is

zin = (Inv —aWnn) (e = D(In +wy) + a(Iny = Wan)tin +uin. (3)

Existence of the latter requires (Iyy —aWyy) to have finite elements and to be invertible
independent of the number of countries N. BEK reformulate the model resulting in the
structural and reduced forms

zin = (INy —aDyy) ™t

x[aWnnzin + (@ — 1)(In +wn) + a(Iny — Wn)tin + ujn], (4)
zin = [Inn —a(Iny — aDyy) " TWan] Y (Iny — aDyy) 7t
X[(a = 1)(Iy + wn) + a(Inny — WNN)EN + ujn], (5)

respectively. The presence of (Iyy — aDyy) ! in (4) makes the model nonlinear in a.
BEK tackle this by estimating a model with right-hand side variables {WN NZjN; (In +
wn); (Inn —Wnn)tin} for each i separately, since the coefficients on these variables are
proportional to (1 — aL;/L)~t.

2.2 Properties and novel insights

Clearly,
[Iny — a(Iny — aDyn) " Wan] HIny — aDyy) ™t = (Iny — W) 7L,

and the reduced forms in (5) and (3) are the same. The matrix Iy —aWyy is invertible
for any finite o # 1 as then it has full rank. In any case, o = 1 is outside the theoretically
admissible parameter space. This suggests that the spatial model does not require the
reformulation in (4) advocated by BEK. Since Wy is idempotent so that W]%] N = Wnn,
the inverse (INN—aWNN)_l = INN"‘ﬁWNN and ‘/VNN(IN]\[—O[VV]\[N)_1 = ﬁWNN~
Moreover, since neither u;y nor [y vary across exporters, Wyyu;ny = ujn and Wynly =
In. Therefore,

1
Wynzin = —Wnn(y +wn) + 1= g (6)

where —Wyn(Iy + wy) is a constant. Hence, there are no suitable instruments for
W nzjn in this model as required, for instance, for a two-stage least-squares approach in

L;Y;
L
and Y; = Zj\;l Xij = %, which implies wage equalization, W; = W. Choosing the wage as the

o . L;L; . . .
numéraire, we obtain X;; = —7%. Then, trade costs are irrelevant, and the variance of log bilateral

exports, ;; = In X;j;, is fully determined by the variation in exporter- and importer-specific log labor
endowments (or population) across countries.

! After defining Y = 25\7:1 Yi, at the approximation point of the model a@ = 0, we obtain X;; =




the spirit of Kelejian and Prucha (1998), Lee (2003), or Kelejian, Prucha and Yuzefovich
(2004). In other words, the nature of {Wxn,In,wn,u;n} and the parameter restrictions
in the model imply that all of the variation in Wy z;n is due to the approximation error,
ujn. Replacing Wynzjn in (2) by the right-hand side in (6) and adding [y + wy on
both sides of the equation results in

Gy =zintivtwy = allyy = Wyn)(wy +tn) + 7——ujn- (7)
We obtain the following five insights. First, BEK’s linearization of (1) can be represented
by (7), which relies exclusively on spatially weighted exogenous variables, but not on
spatial lags of the dependent variable or of the disturbances. This corresponds to a spatial
Durbin model. Second, while omitting a relevant spatial lag of the dependent variable
from the right-hand side of a spatial autoregressive model usually leads to an omitted
variables bias, this is not the case here, in a narrow sense. Omitting aWyyz;y from
the right-hand side of (2) has only two consequences for equation (7): a rescaling of the
constant and of the error term in (7) relative to (2). Third, since the approximation error
u;n varies only across importers j and exclusively depends on exogenous model variables,
it appears natural to specify it as to be heteroskedastic or clustered by exporting country
i. Hence, the device for parameter estimation is an OLS model with cluster-robust
standard errors, which is much simpler than the first-order spatial-autoregressive-moving-
average (SARMA) model in BEK.? Fourth, under BEK’s assumptions, the model should
be estimated for all countries jointly for the sake of efficiency gains, which is cumbersome
with BEK’s approach relying on (4). Fifth, to the extent that the approximation error is
correlated with wy or (Iny — Wnn)tjn, it may be preferable to estimate (2) instead of
(7). The reason is that W nzjn depends linearly on u;y according to (6) and, hence,
fully controls for BEK’s model approximation error. The latter implies that Wy nz;jn is
a control function. Its parameter absorbs potential bias from the correlation of the other
regressors with u;x. As a result, the parameter on Wxnz;jn should not be interpreted
as an estimator for a.

3 Simulation study

3.1 Design of experiments

We construct worlds of countries and country pairs according to (1) where everything is
known to the simulator, while the researcher does not know the parameters on the re-
gressors. We consider two configurations regarding country numbers with N € {30;60}
leading to numbers of country pairs of N2 € {900;1,600}. This corresponds to typ-
ical data situations found in empirical structural work on gravity models (see Eaton
and Kortum, 2002; Anderson and van Wincoop, 2003; Balistreri and Hillberry, 2007;
Behrens, Ertur and Koch, 2012). For each of these worlds, we consider three config-
urations @ € {—2;—4;—9}, which are supported quantitatively by a sizable body of

2 Alternatively, one might want to estimate an exponential-family model for reasons outlined in San-
tos Silva and Tenreyro (2006).



work (see Arkolakis, Costinot and Rodriguez-Clare, 2012). Hence, there are six param-
eter configurations. For each of them, we randomly draw 1,000 independent vectors of
bilateral distances with typical element DIST;; and population sizes with typical ele-
ment L; from the empirical distribution of these variables as published by the Centre
d’Etudes Prospectives et d’Informations Internationales for DI ST;; and by the World
Bank’s World Development Indicators for L; (using the year 2007). In line with the
robust result of a coefficient on log distance of about avge = —1 in empirical gravity
models, we assume that log distance, dist;;, is related to log trade costs t;; by a param-
eter of v4iss = —1/a. Based on the draws for L; and t;;, the endogenous variables W;
and Xj; are solved from (1).

3.2 Features of model variables and the approximation error

Before turning to estimation, it is useful to study some moments and the correlations of
key variables in the model across all experiments. For this purpose, we report on the
averages of an analysis of variance of some variables in Table 1 and on average partial
correlation coefficients in Table 2, each of them computed across all draws within one of
the six parameter configurations in {N; a}.

Table 1 reports on sums of squares of key variables and reveals the following features.
First, the variation in the approximation error, u;;, is large relative to normalized bilateral
exports in logs, z;;, and its size rises with the absolute level of a; i.e., with the distance
to the approximation point used by BEK to linearize the model.

The approximation error varies to a greater degree than log wages, wy, whose variance
is the same as that of (Iny — Wyn)wn. The relative magnitude of the sum of squares
of u;; relative to that of z;; declines as N, the number of countries, rises. The variance
of (Iny — Wnn)tjn with typical element fij is important relative to that of u;n and
wy. Clearly, while the exporter-and importer-specific components in #;; are symmetric
by design (log-distance is symmetric), those of tNij are not. The pair-specific component
of fij is much bigger than the country-specific ones. Second, the variation in w;; is purely
importer-specific. This is because BEK’s approximation is about an importer-specific
term, the log consumer-price index.

Table 2 suggests that there is a perfect correlation between the elements of Wy nz;jn
and the ones of the approximation error, w;jy, consistent with (6). There is some
correlation between (Iny — WNN)th and u;y. This means that the parameter on
(INnn — Wnn)tjn may exhibit some bias unless we condition on Wy nz;n (which means
conditioning on u;y, as mentioned before). However, we expect this bias to fade as N
rises. Not surprisingly, this problem becomes more pertinent if the approximation error
is larger, which is the case with a bigger absolute value of a.

Figure 1 visualizes the relationships in Table 2 based on one specific random draw
for N = 30 and o = —4. There are four general insights from an inspection of Figure
1 in conjunction with Table 2. First, the upper left panel of the figure documents that
Wnnzjn is indeed perfectly correlated with ujy as suggested by (6). Second, all of
the panels in Figure 1 illustrate the block structure of u;y which means it is not in-
dependently and identically distributed. Third, while the correlation between wu;y and



the other right-hand side model variables is weak on average, it may be stronger de-
pending on the specific configuration of trade costs (t;5) and population size (Wyn).
From Table 2 we know that the risk of correlation between model variables and u;y
is higher for (Iynny — Wyn)tjn than for wy. Figure 1, for instance, illustrates a case
where (Iny — Wyn)t;n is negatively and (o — 1)(Iy +wn) +a(Iny — Wnn)tjn is pos-
itively correlated with u;xy. In such a case we would expect the estimated parameter on
(Inn —Wnn)tjn to be biased. Altogether we would expect a larger root mean squared
error for the parameter on this variable than on wy or (Iyy — Wyn)wy, unless one
controls for u;y.

3.3 Parameter estimation

In this subsection, we generally employ Z;y as the normalized dependent variable. We
define the log-nonlinear term M;y = (ln(z,i\[:l L;CW,?‘T,%D and formulate four types of

models:

Zin = oo+ aw(ly +wn) +atjn — My, (A)
Zin = oo+ Wynzin + aw(ly +wn) + ai(Iny — WaN)EiN + ujn, (B)
B 1

Zn = a0+ ow(Ivy = Win)wy + ae(Iny = Waw)tin + 1w, (©)
5 1

Zin = aotaw(y twn) +a(Iny = WNn)tin + 7w (D)

Model (A) is the structural model directly corresponding to the log of (1), which we
estimate by iterative least squares (cf. Anderson and van Wincoop, 2003). Models (B)-
(D) can be estimated by simple OLS. In Section 2, we proved that Models (C) and (D)
are equivalent so that there is no need to report on results for (D) apart from (C). Of
all Models (A)-(C) we only present an unconstrained parameter-estimation version each,
which does not enforce that a,, = a and a; = a7y are identical due to the chosen
parametrization. We do so to mimic the situation of an empirical researcher who does
not observe t;; but only dist;;. The estimated parameters {éu; &4} should be close to
the true «, especially, when being based on Models (A) or (B).

Apart from a process where the structural nonlinear Model (A) is true, we consider
one where

ZiN = ZjiN TN = ao + aw(In +wN) + autjn — Mjn + €N,

with g;; ~ i.i.d.N(0,02). We calibrate o2 such that, in each experiment, the explanatory
power as measured by the R? is 80% (= (1 — 02/02.) x 100%), which is representative
of a vast amount of empirical work on gravity models. The term ¢;; adds stcchastics in
a narrow sense which provides for a residual with Models (A) and (B) and one beyond
the approximation (or linearization) error in Model (C).

We report on the average bias and root-mean-squared error (RMSE) in percent of the
true « across all draws per configuration of {N;«} in Tables 3 and 4. Both tables are



organized in three by two blocks. Each horizontal block contains estimates for the Models
(A)-(C) for the cases N = {30;60}. Vertically, we have three blocks corresponding
to a = {—2;—4;—-9}. For each of the six blocks, we report on {ans.;éu; dy} (where
applicable).

We may summarize the simulation results in Tables 3 and 4 as follows. First, in the
absence of ¢;; (Table 3), both Models (A) and (B) correspond to the true one so that
both the bias and the RMSE for {é,; &y} in percent are zero. Recall that conditioning
on Wynz;n means conditioning on u;y, according to (6). Clearly, Model (C) performs
worst, but the bias and RMSE are still relatively small in Table 3. Second, the bias and
RMSE of {Gu; Gy} in percent rise in Model (C) with the absolute value of . This is a
consequence of the linearization point of BEK’s model being o = 0. A greater distance
to the approximation point means introducing endogeneity of wy and (Iyny — Wnn)tin
in Model (C). Third, as expected, both the bias and the RMSE of {é,,; &} in percent
decline in Model (C) as the number of countries rises. However, then also the need for
controlling for general equilibrium effects and nonlinear trade-cost effects as captured by
H;n in (A) declines (see Egger and Staub, 2015). Fourth, adding a stochastic term &;;
to the log-transformed true model does not add a significant bias for Models (A)-(C),
but it raises the corresponding RMSEs relative to Table 3, as expected.

4 Conclusions

This paper sheds light on the nature of structural linearized gravity models involving an
endogenous spatial lag — other countries’ population-share-weighted bilateral trade flows
— as developed in Behrens, Ertur and Koch (2012). We demonstrate that the structure
of the models, when considering their properties, is such that they do not require any
use of spatial econometrics. Exporter-population-share-weighted log bilateral exports on
the right-hand side of the models serve as a control function for the approximation error
of the linearization, and this variable can be included without specific treatment (i.e.,
ignoring its endogeneity). One model version corresponds to a spatial Durbin model,
which involves exporter-population-share-weighted exporter log wages (a constant) and
log bilateral trade costs. These results should please the applied researcher, since esti-
mation of such linearized models only involves OLS (on log-tranformed trade flows) with
clustered standard errors at the level of exporters. For these particular models, there
is no need for resorting to spatial econometric methods from a structural perspective,
neither for point estimation nor for inference.
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Tables and figures

Figure 1: Scatterplot and linear fit of approximation error (u) and right-hand side
variables from a random draw of the DGP with o = —4 for N = 30
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Notes: The four panels of the figure display scatterplots of data obtained from one random draw of
the DGP with o = —4 for 30 countries (900 observations). The red line represents the fit from a linear
regression.



Table 1: Analysis of variance for key model variables (mean sums of squares over 1,000
replications)

N =30 N =60

SS Zij uij w; tij Zij uij Ww; tij

a=-—2
i (exporter) 112.26 0.00 1499 2047 370.46 0.00 52.21 77.74
j (importer) 112.26 68.40 0.00 29.39 370.46 171.00 0.00 95.89

residual 738.85 0.00 0.00 184.71 2398.63 0.00  0.00 599.66
total 963.38  68.40 14.99 234.58 3139.55 171.00 52.21 773.29
a=—4

i (exporter) 127.93 0.00 6.01 5.11  127.93 0.00 6.01 5.11
j (importer)  127.93 205.19  0.00 7.47 12793 205.19  0.00 7.47

residual 737.95 0.00 0.00 46.12 737.95 0.00 0.00 46.12
total 993.82 205.19 6.01 5870 993.82 205.19 6.01  58.70
a=-9

i (exporter) 139.89 0.00 1.63 1.01  139.89 0.00 1.63 1.01
j (importer)  139.89 949.64  0.00 1.48 139.89 949.64 0.00 1.48
residual 737.95 0.00  0.00 9.11 73795 0.00  0.00 9.11
total 1017.72 949.64 1.63 11.60 1017.72 949.64 1.63 11.60

Notes: SS refers to sum of squares. {Z‘j =tij—y, %tij is a typical element of (Iny —WnnN)t;iN-

Table 2: Partial correlation coefficients of model variables with approximation error
ujn (mean and standard deviations over 1,000 replications)

N =30 N =60
Mean SD Mean SD
a=-—2
WNNZjiN 1.00 0.00 1.00 0.00
IN +wn -0.00 0.00 0.00 0.00
(Inn — WnNN)tiN 0.06 0.14 0.06 0.10
a=—4
WnNzin 1.00 0.00 1.00 0.00
IN +wn -0.00 0.00 -0.00 0.00
(Inn — WNN)th -0.01 0.19 -0.02 0.14
a=-9
WNNZjiN 1.00 0.00 1.00 0.00
IN +wyn 0.00 0.00 -0.00 0.00

(Iny — Wan)tiny  -0.06 021 -0.08 0.17
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Table 3: Average bias and root mean squared error of estimated model parameters
(1,000 replications): DGP with approximation error only

N =30 N =60
M ® © @B B (©
a=—-2
&, DBias — -150.00 - — -150.00 -
RMSE -~ 150.00 - — 150.00 -

&, DBias -0.00 0.00 -1.21 -0.00 -0.00 -0.76

RMSE  0.00 0.00 2.05 0.00 0.00 1.28
&; DBias -0.00 -0.00 -0.79 -0.00 -0.00 -0.60
RMSE  0.00 0.00 1.56 0.00 0.00 1.05

a=—4
&, Bias - -125.00 - - -125.00 -
RMSE - 125.00 - - 125.00 -

&, DBias -0.00 0.00 -0.81 -0.00 -0.00 -0.36

RMSE  0.00 0.00 1.67 0.00 0.00  0.99
&¢ DBias -0.00 -0.00 -0.13 -0.00 -0.00 0.08
RMSE  0.00 0.00 1.80 0.00 0.00 1.24

a=-9
&, Bias - -111.11 - - -111.11 -
RMSE - 111.11 — - 111.11 -

Gy, DBias -0.00 -0.00 -0.60 -0.00 0.00 -0.16
RMSE  0.00 0.00 1.46 0.00 0.00 0.91
&¢ DBias -0.00 0.00 0.40 -0.00 0.00 0.64
RMSE  0.00 0.00 225 0.00 0.00 1.74

Notes: Columns (A), (B) and (C) refer to Models (A), (B) and (C)
in Section 3.3. Table entries are average biases and root mean squared
errors in percent of the true a.
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Table 4: Average bias and root mean squared error of estimated model parameters
(1,000 replications): DGP with approximation error and stochastic error

N =30 N =60
A B  (© (A (B (©
a=-—2
&, Bias — -128.50 — - -128.95 -
RMSE - 129.33 — - 129.51 —
&, Bias 0.20 -0.00 -1.00 -0.03 -0.18 -0.80
RMSE 4.13 411 449 1.70 1.70 2.10
&; Bias 0.01 -0.07 -0.79 0.01 -0.12  -0.59
RMSE 1.00 1.11  1.76 0.43 0.59 1.13
a=—4
&, Bias - -114.20 — — -114.57 —
RMSE - 114.42 — - 114.72 -
&, Bias 0.20 0.12 -0.61 -0.05 -0.04 -0.41
RMSE 3.32 3.30 3.62 1.38 1.38 1.68
&; Bias 0.00 0.33 -0.14 0.00 0.24  0.09
RMSE 1.04 1.37  1.99 0.45 0.77 1.31
a=-9
&, Bias — -106.46 - - -106.70 -
RMSE - 106.51 — - 106.73 -
&, Bias 0.15 0.12 -0.45 -0.05 0.03 -0.20
RMSE 2.94 294 322 1.22 1.22  1.51
&; Bias 0.00 0.63 0.39 0.00 0.50 0.65
RMSE 1.06 1.67 241 0.46 1.01 1.80

Notes: Columns (A), (B) and (C) refer to Models (A), (B) and (C)
in Section 3.3. Table entries are average biases and root mean squared
errors, in percent of the true a.
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