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1 Introduction

The gravity equation—describing aggregate demand for goods or services between any pair of

countries—is among the most successful concepts in all of economics (see Leamer and Levinsohn,

1995). Its popularity derives from the fact that it nests a wide variety of isomorphic structural

models of aggregate bilateral demand such as endowment-economy, Ricardian, and monopolistic-

competition increasing-returns-to-scale models with a fixed markup (see Eaton and Kortum, 2002;

Anderson and van Wincoop, 2003; Arkolakis, Costinot and Rodríguez-Clare, 2012; Bergstrand,

Egger and Larch, 2013; Baltagi, Egger and Pfaffermayr, 2015).

The main reason why gravity equations are rarely estimated in their structural form is that they

are nonlinear in parameters after taking logarithms. Rather, practitioners use either country fixed

effects, which may be inefficient, or theory-based linear approximations in estimation. Behrens,

Ertur and Koch (2012, henceforth BEK) introduced such a linearization in a version of a constant-

elasticity-of-substitution model, where price indices can be expressed as implicit functions of trade

flows. The linearized equilibrium system leads to an econometric specification in which trade flows

between two countries depend on trade flows between all trading partners, thus exhibiting the

characteristics of a network-weighted model. To deal with this interdependence among observations,

BEK adapt methods from the literature on network econometrics that account for simultaneous,

cross-sectionally autoregressive structures. While the model has since been used, an existing barrier

to its further dissemination lies in the computationally demanding network-based estimation.

In this paper, we propose estimators that exploit the structural form of the same network model to

recover the model’s structural parameters. In contrast to the previous network-based approach to

estimating the model, the proposed estimators are simple OLS (or Poisson PML—pseudo maximum

likelihood) estimators. In our preferred proposed approach, the network structure is fully captured

through the inclusion of an appropriate regressor that serves in a control function to address the

endogeneity resulting from the model’s network structure. As a result, the proposed estimator

is fully efficient in the sense of there not being any efficiency loss due to estimating the linear

approximation rather than the true non-linearized model. Constructing this control function is

straightforward as it is just a weighted average of the data and does neither require instruments nor

additional estimation steps. Therefore, the proposed alternative estimators are easily implementable

in practice, providing a low-cost way for practitioners to estimate this popular structural gravity

network model, either applied to international trade flows as in the original BEK paper or applied

to other bilateral flow data such as immigration or financial investment.

We examine the properties of the structural gravity model and this linearization as well as the

finite sample performance of the estimators in a series of numerical Monte Carlo experiments. The

simulation data are obtained by randomly drawing exogenous variables from real-world data and

then solving for endogenous variables according to the theory-based structural general equilibrium

model. As we show theoretically and confirm in the simulations, the only source of bias in a proposed
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reduced-form OLS estimation stems from the original linearization of the model. Overall, the

simulation results demonstrate that this bias is moderate and shrinks towards zero with increasing

sample size. Moreover, the preferred new control-function OLS approach does not suffer from this

linearization bias and is unbiased in all sample sizes.

We continue with presenting the generic structural gravity model and its linearization following

BEK in Section 2. we show how this model can be estimated by linear (or generalized linear)

methods in Section 3. A numerical assessment of the estimators is provided in Section 4, followed

by our conclusions in Section 5.

2 A linearized structural gravity network model of trade

We consider a standard gravity equation derived from utility maximization subject to income con-

straints, which can be represented for exporter i and importer j as

Zij ≡
Xij

YiYj
=

Cα−1i Tαij∑N
k=1 LkC

α
k T

α
kj

Ci = L−1i

N∑
j=1

Xij =
N∑
j=1

Cαi T
α
ijCjLj∑N

k=1 LkC
α
k T

α
kj

. (1)

Here, Zij are aggregate bilateral exports, Xij , normalized by exporter and importer GDP, Yi and Yj ,

respectively. The variable Ci represents the costs per unit of a single or a bundle of factors Li, Tij are

bilateral trade costs, and Li is size (up to scale) of a market measured in terms of its factor supply

(see Arkolakis et al., 2012). As mentioned, (1) is compatible with a variety of aggregate bilateral

demand models such as endowment-economy, Ricardian, and monopolistic-competition-increasing

returns-to-scale models (see the appendix for more details).

Equation (1) shows that the log of Zij , zij , is a log-nonlinear function of {Ci;Tij ;Li}. The key

structural parameter α = (−∞, 0) reflects the partial response of trade with respect to changes in

trade costs (see Dixit and Stiglitz, 1977, or Eaton and Kortum, 2002). Through (1), upon choice of

a numéraire cost (C1 = 1) and for a given α, the N − 1 endogenous values of Ci are determined by

N − 1 equations for given (exogenous) values of Li and Tαij .
1

BEK take the logarithm of equation (1) and derive a first-order approximation around the point

α = 0. To provide a compact notation, let us generally use the convention that lower-case letters

refer to variables in logarithms. and let us refer to N -size vectors and N × N square matrices by

subscriptsN andNN , respectively.2 Letting the world endowment size be denoted by L ≡
∑N

k=1 Lk,

define the following vectors and matrices:
1In a Dixit-Stiglitz-Krugman-type model the size of countries is parameterized by the endowment Li. In an Eaton-

Kortum Ricardian economy this would be productivity, and in an Armington economy it would be a preference shifter.

For the purpose of the arguments in this paper, these differences are only semantic.
2Recall that N parameterizes the number of countries, and N2 the number of country pairs, including every

domestic relation where i = j as one such pair for every country i.
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(i) the N × 1 column vector ωN , whose ith row element is Li/L ∈ (0, 1),

(ii) the N × 1 column vector of ones ιN ,

(iii) the N × N asymmetric matrix WNN = ιNω
′
N which in every row of column j contains the

same elements Lj/L in all the rows,

(iv) the identity matrix INN = diag(ιN ).

Let us stack all observations on Zij across exporters i for a given importer j into the N × 1 vector

of log bilateral normalized exports zjN = (zij), stack log world endowment into an N × 1 vector

lN = (l) = lιN with identical row entries, stack log unit factor-bundle costs into the N × 1 vector

cN = (ci), and stack log ad-valorem trade costs across all exporters i for a given importer j into

the N × 1 vector tjN = (tij). Using this notion, BEK arrive at a log-transformed and linearized

counterpart to (1):

zjN = αWNNzjN + (α− 1)(lN + cN ) + α(INN −WNN )tjN + ηjN , (2)

where ηjN is the approximation error due to linearization, which only varies across importers j but

not exporters i.3,4 In its role as the coefficient on WNNzjN , BEK refer to α in equation (2) as the

autoregressive interaction coefficient. They do so, becauseWNNzjN captures the interdependence of

bilateral exporters across countries and provides an intuitive network measure of “spatial interaction”

or “competition”. It is customary in empirical work to further specify tij =
∑H

h=1 γhdh,ij (see

Anderson and van Wincoop, 2003, 2004, Eaton and Kortum, 2002, and many others), where dh,ij
are H-many observable trade-cost variables in logs such as bilateral log bilateral distance. What is

then estimated on dh,ij are the compound parameters αγh.

The reduced form that directly corresponds to (2) is

zjN = (INN − αWNN )
−1[(α− 1)(lN + cN ) + α(INN −WNN )tjN + ηjN ]. (3)

Existence and uniqueness of the latter requires two things: (i) that (INN − αWNN ) is invertible,

and (ii) that [(α− 1)(lN + cN ) +α(INN −WNN )tjN + ηjN ] is an N × 1 vector with finite elements.

The latter property is trivially fulfilled in this setting. In contrast, the invertibility of the matrix

(INN −αWNN ) is not obvious. The reason is that the weighting matrix WNN has nonzero diagonal

elements. Hence, the network features self-loops (see Newman, 2018), which induce what Manski
3This is equation (11) in BEK. The notation in BEK uses the parametrization α ≡ 1−σ and stacks further across

all j. BEK linearize the model about an importer-specific term, the log ideal consumer-price term. As this term lacks

variation across exporters i, the corresponding approximation error, too, is importer-specific.
4After defining Y ≡

∑N
i=1 Yi, at the approximation point α = 0 of the model, we obtain Xij =

LiYj

L
and

Yi =
∑N
j=1Xij = LiY

L
, which implies factor-cost equalization, Ci = C. Choosing C as the numéraire, we obtain

Xij =
LiLj

L
. Then, trade costs are irrelevant, and the variance of log bilateral exports, xij = lnXij , is fully determined

by the variation in exporter- and importer-specific log factor endowments across countries or regions i and j.
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(1993) called the “reflection problem” (see also Bramoullé et al., 2009). It was the presence of

these self-loops, which led BEK to reformulate equation (3) in a way that complicates estimation

tremendously. However, we are able to establish the analytical invertibility of (INN − αWNN ) in

spite of the presence of self-loops and discuss the respective properties of the inverse below.

3 Novel insights and econometric methods

3.1 Properties of the linearized gravity network model

Despite network matrices with self-loops falling outside the assumptions covered in the aforemen-

tioned literature in econometrics and statistics, such network matrices are quite common in eco-

nomics. The so-called Leontief inverse—which is based on a selling-sector revenue-scaled inter-sector

input-output-flow matrix—is one of the most prominent examples. Earlier work established results

regarding the existence and uniqueness of such problems involving Leontief-type inverses with self-

loops (see Woodbury, 1949, Lampert and Scholtes, 2023, Bellido and Prieto-Martínez, 2024), and

we build on these results to show the existence of the reduced form for the linearized gravity network

model in the following lemma.

Lemma 1 (Inverse of (INN −αWNN )). Let each country exhibit an endowment that is positive and

finite with 0 < L ≤ Li ≤ L < ∞, where {L,L} are bounding constants for country endowments.

Let the parameter α be bounded in the compact interval −∞ < α ≤ α ≤ α < 0, where {α, α} are

bounding constants for α.

Then, the inverse of the matrix (INN−αWNN ) exists and is unique, and it is given by the Sherman-

Morrison-Woodbury formula as

(INN − αWNN )
−1 = INN +

α

1− α
WNN . (4)

Proof. Let us use a = −α and the M × 1 vector aN = aιN . Note that INN is a special case of an

invertible square matrix with real-valued entries. And note that aN and ωN are special cases of

column vectors with real-valued entries. In general, the Sherman-Morrison-Woodbury formula for a

non-singular, real-valued N×N matrix INN and real-valued N×1 column vectors (aN , ωN ) forming

the N×N matrix aNω′N = −αWNN states that (see Sherman and Morrison, 1950; Woodbury, 1950;

Riedel, 1992; Hao and Simoncini, 2021)

(INN + aNω
′
N )
−1 = I−1NN −

I−1NNaNω
′
NI
−1
NN

1 + ω′NaN
.

Clearly, I−1NN = INN with an identity matrix. Moreover I−1NNaNω
′
NI
−1
NN = aNω

′
N = −αWNN and

1 + ω′NaN = 1 + a = 1− α, because the row entries of ω′N are all positive, smaller than unity, and
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sum up to one. Hence,

(INN − αWNN )
−1 = INN +

α

1− α
WNN

for every real-valued, non-zero scalar α in the admissible parameter region [α, α] and any row-

normalized N ×N network matrix WNN = ιNω
′
N based on the real-valued weight vector ω′N , whose

elements sum up to unity.

Our result on the existence of the inverse in Lemma 1 and therefore the existence of the reduced form

(3) contributes to a recent literature in international economics which studies the graph stability and

finiteness of responses in shocks of graphs in trade and migration models with self-loops (Allen et al.,

2020; Kucheryavyy et al., 2023; Allen et al., 2024; Kucheryavyy et al., 2024; Bifulco et al., 2025). A

key difference of our model to this literature is that here the model is linear in parameters. Thus,

while this literature has to impose (strong) restrictions on parameters to establish the uniqueness of

equilibrium responses to shocks (e.g., the exact or near symmetry or the relative magnitude of the

elements tij of the trade-cost matrix), existence in the present case follows under relatively general

conditions, as we have shown.5

Based on Lemma 1, we can further simplify the reduced form of the nonstochastic model in (3).

To this end, note that any invariant vector vN such as lN or ηjN has the property that INNvN =

WNNvN = vN . Moreover, note that WNN is idempotent. To see this, recall that WNN = (ιNω
′
N ).

Therefore, W 2
NN = (ιNω

′
N )(ιNω

′
N ) = ιN (ω

′
N ιN )ω

′
N , where (ω′N ιN ) = 1 by design. Using these

results, we can state the right-hand-side terms of (3) as

(INN − αWNN )
−1(α− 1)(lN + cN ) = −(lN − cN ) + α(INN −WNN )cN ,

(INN − αWNN )
−1α(INN −WNN )tjN = α(INN −WNN )tjN ,

(INN − αWNN )
−1ηjN =

1

1− α
ηjN ,

so that, after rearranging terms, we can write the reduced form (3) as

zjN = −(lN − cN ) + α(INN −WNN )(cN + tjN ) +
1

1− α
ηjN . (5)

Further, by pre-multiplying both sides of (5) with WNN we obtain

WNNzjN = −WNN (lN + cN ) +
1

1− α
ηjN , (6)

5It should also be noted that the structure and configuration of the networkWNN = ιNω
′
N falls strictly outside the

catalog of assumptions invoked in most of the network-econometrics and social-interactions literature (see Kelejian

and Prucha, 1999, Lee, 2003, 2004, Bramoullé et al., 2009, and many others). The make-up of the matrixWNN is also

special in that it relies on the distribution of node (here, a node being a country) weights in the overall network. The

weight of node i in the network is the same for any node j, whereby network-weighted averages of node characteristics

across all N nodes are the same for every node i. To the best of our knowledge, the network- and social-interactions

literature does not offer insights for this situation. However, we are faced with such a problem for theoretical reasons.

6



where −WNN (lN + cN ) is a constant.

3.2 Novel estimators for the linearized gravity network model

The forms of the reduced form equation (5) and of the autoregressive network lag (6) that appears in

the structural model (2) have important consequences for the feasibility of econometric approaches

to estimate this linearized gravity network model. Specifically, earlier work proposes instrumental-

variable estimators to estimate the structural form of autoregressive network models that are linear

in parameters as is the model in (2) (see Kelejian and Prucha, 1998, Lee, 2003, or Kelejian et al.,

2004). A general result of our paper is that such an approach has limitations for all network models

where the weights matrix is constructed as WNN = ιNω
′
NN with ω′N being a weights vector that

will appear in each row of the idempotent matrix WNN . The reason is that said instrumental-

variables approach relies on instruments generated based on the power series (INN ,WNN ,W
2
NN , ...)

applied to the exogenous regressors other than the (endogenous) network-weighted outcome variable

in the model. With an idempotent WNN , this series and associated matrix of elements is reduced

to (INN ,WNN ). Whenever the structural model includes regressors that appear weighted with

WNN on the right-hand side (as is the case with tjN here), these variables are completely lost as

instruments. In the present context, tjN is the only regressor which varies across all observations,

which precludes instrumental variable estimation of the structural model form in (2). Two-stage

least-squares approaches require instruments for WNNzjN which satisfy the exogeneity assumption.

Equation (6) shows that there are no suitable instruments for WNNzjN in the model at hand. The

nature of {WNN , lN , cN , ηjN} and the parameter restrictions in the nonstochastic model imply that

all of the variation in WNNzjN is due to the approximation error, ηjN . Therefore, no instrument

coming from inside the structural model can be correlated with WNNzjN and uncorrelated with

ηjN .

To consider new estimation approaches for this model, we introduce empirical counterparts to the

structural equation (2) and the reduced-form equation (5) that in addition to the approximation

error vector ηjN have a random error vector, εjN , whose elements are independently distributed and

vary across all observations ij, so that E(εjNε
′
jN ) = diagN×N (σ

2
ε,ij) in case of heteroskedasticity

and E(εjNε
′
jN ) = σ2εINN in case of homoskedasticity. We assume that the model’s approximation

error ηjN and the random error term εjN are fully independent of each other.

After adding lN + cN on both sides of the equation and introducing the two-component error term

ujN = ηjN + εjN , we now have for the structural equation

z̃jN ≡ zjN + lN + cN = αWNNzjN + α(lN + cN ) + α(INN −WNN )tjN + ujN . (7)

Similarly, we can write the stochastic counterpart to the reduced form (5) as

z̃jN = α(INN −WNN )(cN + tjN ) + ũjN , (8)
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where ũjN = 1
1−αηjN + εjN . We use equations (7) and (8) to propose two new simple estimators

for the linearized gravity model at hand.

Reduced-form OLS

First, as we showed, (1) can be represented by (7), which relies exclusively on network-weighted

exogenous variables but not on network-weighted lags of the dependent variable or the disturbances.

While omitting a relevant network-weighted average of the dependent variable from the right-hand

side of a model usually leads to an omitted variables bias, this is not the case here. Omitting

αWNNzjN from the right-hand side of (2) has only two consequences for equation (7): a rescaling of

the constant and of the error term in (7) relative to (2). Therefore, the structural model parameters

α and γ can be recovered by estimating the linear regression model

z̃jN = αw c̈N +

H∑
h=1

βhd̈h,jN + ũjN (9)

by OLS, where c̈N = (INN −WNN )cN and d̈h,jN = (INN −WNN )dh,jN are the network-weighted

exogenous variables. The OLS coefficient on c̈, αw, estimates α. The coefficients on the (network-

weighted) observable variables that parametrize bilateral trade costs, d̈jN , estimate βh = αγh.6

These composite parameters might be of independent interest. If not, a consistent estimator of γh
can be obtained as γ̂h = β̂h/α̂.

Since the (scaled) approximation error η̃jN varies only across importers j this leads to the regression

error terms ũij being correlated for a given importer j: Cov(ũij , ũi′j) 6= 0 for two exporters i and

i′. Thus, inference after estimation of (9) should rely on cluster-robust standard errors clustered by

importers.

This proposed OLS estimation with clustered standard errors is a substantially simpler approach

than the econometric models employed in BEK, paving the way for a wider use of the proposed

linearization. The model can be easily estimated for all countries jointly for the sake of efficiency

gains without any violation of the model assumptions. We denote this approach as RF-OLS, for

reduced-form OLS.

Control-function OLS

Our second approach is based directly on the structural equation (2), or, more precisely, its empirical

counterpart (7). To the extent that the approximation error ηjN is correlated with cN or (INN −
WNN )tjN , it may be preferable to estimate (7) instead of using RF-OLS. That is, we can estimate

6The model can be estimated with a constant by including a regressor d1,jN = 1 in the specification of trade costs

with β1 then being the constant.
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the structural model parameters from the linear regression model

z̃jN = αw c̃N +
H∑
h=1

βhd̈h,jN + δWNNzjN + ujN (10)

by OLS. In the latter, αw on the term c̃N = lN + cN estimates the key structural parameter

α, and the coefficients on the regressors d̈h,jN estimate βh = αγh. The reason for preferring this

approach is thatWNNzjN depends linearly on ηjN , according to (6). Hence, δWNNzjN fully controls

for the linearized gravity model’s approximation error. This implies that δWNNzjN is a control

function. Its parameter δ absorbs the potential bias from the correlation of the other regressors

with ηjN . In other words, while the regression error ujN is endogenous in the sense of violating

mean independence, E(ujN |c̃N , d̈jN ) 6= 0, after conditioning on WNNzjN it is rendered exogenous,

E(ujN |c̃N , d̈jN ,WNNzjN ) = 0. Because of the term WNNzjN ’s role in the control function, the

parameter δ should not be interpreted as an estimator for α. Finally, for the same reasons as

discussed with the RF-OLS approach, inference should rely on importer-clustered standard errors.

We denote this approach as CF-OLS, for control-function OLS.

Both of our suggested approaches can also be implemented as generalized linear model (GLM)

estimations. That is, instead of using OLS, equations (9) and (10) can also be estimated via Poisson

pseudo-likelihood estimation or other GLM procedures (see Santos Silva and Tenreyro, 2006) with

appropriate importer-cluster-robust standard errors. For instance, the control-function approach

could be based on the exponential of equation (10),

Z̃jN = exp(αw c̃N +
H∑
h=1

βhd̈h,jN + δWNNzjN )νjN , (11)

where Z̃jN = exp(z̃jN ) and νjN = exp(ujN ) = exp(ηjN+εjN ), and the parameters {αw, β1, . . . , βH , δ}
are estimated by Poisson regression of Z̃jN on {c̃N , d̈1,jN , . . . , d̈H,jN ,WNNzjN}.

Whether OLS, Poisson, or some other GLM estimator is preferred depends on the higher-order

properties of the stochastic error εij (Santos Silva and Tenreyro, 2006). In this paper, we are

more interested in how the approximation error ηjN affects estimation, and we further explore this

numerically through simulation experiments below.

4 Monte Carlo experiments

4.1 Design of experiments

We construct worlds of countries and country pairs according to (1) where everything is known to

the simulator, while the researcher does not know the parameters on the regressors. We consider

two configurations regarding country numbers, N ∈ {30; 60}, leading to numbers of country pairs
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of N2 ∈ {900; 3, 600}. This corresponds to typical data situations found in empirical structural

work on gravity models (see Eaton and Kortum, 2002; Anderson and van Wincoop, 2003; Balistreri

and Hillberry, 2007; Behrens, Ertur and Koch, 2012). For each of these worlds, we consider three

configurations α ∈ {−2;−4;−9}, which are supported quantitatively by a sizeable body of work

(see Arkolakis, Costinot and Rodríguez-Clare, 2012). Hence, there are six parameter configurations.

For each of them, we randomly draw 1, 000 independent vectors of bilateral distances with typical

element DISTij and population sizes with typical element Li from the empirical distribution of

these variables as published by the Centre d’Études Prospectives et d’Informations Internationales

for DISTij and by the World Bank’s World Development Indicators for Li (using the year 2007).

We parametrize bilateral trade costs as tij = distγdistij , where distij is the logarithm of DISTij . In

line with the robust result of a coefficient on log distance of about βdist = αγdist = −1 in empirical

gravity models, we assume that log distance is related to log trade costs tij by a parameter of

γdist = −1/α. Based on the draws for Li and tij , the endogenous variables Ci and Xij are solved

by contraction-mapping based on (1).

4.2 Features of model variables and the approximation error

Before turning to estimation, it is useful to study some moments and the correlations of key variables

in the model across all experiments. For this purpose, we report the averages of an analysis of

variance of some key variables in Table 1 and average partial correlation coefficients in Table 2, each

of them computed across all 1,000 draws within one of the six parameter configurations in {N ;α}.
We first consider here a data generating process (DGP) without stochastic error component (εij = 0

for all i, j), so that the model error uij = ηij + εij consists entirely of the approximation error ηij .

Table 1 reports on sums of squares of key model variables. It reports the total variation in each of

the variables (row ‘total’), as well as a decomposition of the total into variation across exporters

(row ‘i’), importers (row ‘j’) and across ‘ij’, i.e., the bilateral variation (row ‘residual’). The table

reveals that the (total) variation in the error, uij = ηij , is large relative to normalized bilateral

exports in logs, zij . Its size increases with the absolute level of α; i.e., with the distance to the

approximation point used by BEK to linearize the model (α = 0).

The approximation error varies to a greater degree than log factor costs, cN , whose variance is the

same as that of c̈N = (INN −WNN )cN . The relative magnitude of the sum of squares of uij relative

to that of zij declines as N , the number of countries, rises. The variance of (INN −WNN )tjN , with

typical element ẗij , is important relative to that of cN . But its importance relative to ujN depends

on being closer to the approximation point for α. Clearly, while the exporter- and importer-specific

components in tij are symmetric by design (log-distance is symmetric), those of ẗij are not. The

pair-specific component of ẗij naturally dominates the country-specific ones. Finally, as was clear

from the theoretical derivations from the previous section, the variation in uij is purely importer-

specific. This is because BEK’s approximation is about an importer-specific term, the log ideal

consumer-price index.
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Table 2 shows that there is a perfect correlation between the elements of WNNzjN and the ones of

the error, ujN , consistent with equation (6) and the fact that in this case ujN = ηjN . There is some

small correlation between ẗjN = (INN −WNN )tjN and ujN . This means that in estimations where

ẗjN is a regressor, the coefficient on ẗjN may exhibit some bias unless we condition on WNNzjN

(which means conditioning on ηjN , as mentioned before). This problem becomes more pertinent if

the approximation error is larger, which is the case with a bigger absolute value of α.

Figure 1 visualizes the relationships in Table 2 based on one specific random draw for N = 30 and

α = −4. There are four general insights from an inspection of Figure 1 in conjunction with Table

2. First, the upper left panel of the figure documents that WNNzjN is indeed perfectly correlated

with ujN = ηjN as suggested by equation (6). Second, all of the panels in Figure 1 illustrate the

block structure of ujN which means it is not independently and identically distributed and which

motivates the need to use clustered standard errors for inference. Third, while the correlation

between ujN and the other right-hand side model variables is weak on average, it may be stronger

depending on the specific configuration of trade costs (tjN ) and population size (WNN ). From

Table 2 we know that the risk of correlation between model variables and ujN is higher for ẗjN
than for cN . Figure 1, for instance, illustrates a case where (INN −WNN )tjN is negatively and

(α− 1)(lN + cN ) + α(INN −WNN )tjN is positively correlated with ujN . In such a case, we would

expect the estimated parameter on ẗjN to be biased if we do not address the endogeneity with a

control function. Altogether we would expect a larger root-mean-squared error for the estimated

parameter on this variable than on cN or c̈N , unless one controls for ujN .

4.3 Parameter estimation

We compare the estimation of the linearized gravity network model via our two approaches RF-OLS

and CF-OLS. To benchmark these estimators, we also compare them to a structural estimation of

the original, non-linearized gravity model through an iterative least squares procedure. For this

procedure, the dependent variable can also be defined as z̃jN = zjN + lN + cN , where zjN are

normalized trade flows, which is the same as in the proposed RF-OLS and CF-OLS procedures.

Taking the log of (1) and adding the stochastic error vector εjN , the structural model results in

z̃jN = α0 + αcc̃N + αttjN −mjN + εjN , (SILS)

where c̃N = lN +cN and the log-nonlinear term is defined as mjN ≡ ln(
∑N

k=1 LkC
α
k T

α
kj). The model

can be estimated by structural iterative least squares (cf. Anderson and van Wincoop, 2003), which

we denote by SILS. In our implementation of SILS, for an initial guess of m̂jN , the coefficients

appearing in equation (SILS) can be estimated by an OLS regression of z̃jN + m̂jN on a constant,

c̃N , and tjN . These coefficients can be used to obtain an updated estimate of m̂jN , which in turn

can be used to perform an updated OLS regression. These steps are iterated until the values of the

estimated coefficients converge.

Note that for (SILS) there is no approximation error term ηjN , since no approximation has been
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applied; this is the true non-linearized structural model. And since in our first DGP there is also no

random error (that is, εjN = 0), SILS in this case is an algorithm to solve for the model parameters,

rather than to estimate them.

The two estimators of the linearized gravity equation which leads to a network model are based on

the following estimating equations

z̃jN = α0 + αcc̃N + αtẗjN + δWNNzjN + ujN , (CF-OLS)

z̃jN = α0 + αcc̈N + αtẗjN + ũjN , (RF-OLS)

which, as discussed in Section 2, can be estimated by simple OLS. For all three models—(SILS),

(CF-OLS) and (RF-OLS)—we only present an unconstrained parameter-estimation version each,

which does not enforce that αc = α and αt = αγdist are identical due to the chosen parametrization.

We do so to mimic the situation of an empirical researcher who does not observe tij but only distij .

The estimated parameters {α̂c; α̂t} should be close to the true α, especially, when being based on

models (SILS) or (CF-OLS). While in the latter model there is an approximation error, we saw in

Section 3 that the control function WNNzjN accounts fully for it (that is, not just in expectation,

as is typically the case with control function approaches; see, e.g., Wooldridge, 2015).

Apart from a data generating process (DGP) where the structural nonlinear model (SILS) is true,

we consider a second DGP with an additional stochastic error term εjN . Specifically, we specify

the random error as εij
IID∼ N(0, σ2ε). We calibrate σ2ε so that, in each experiment, the explanatory

power as measured by the R2 is 80% (= (1 − σ2ε/σ2z̃∗) × 100%), which is representative of a vast

amount of empirical work on gravity models. The term εij adds stochastics in a narrow sense which

provides for a residual with Models (SILS) and (CF-OLS) and one beyond the approximation (or

linearization) error in Model (RF-OLS).

We report on the average bias and root-mean-squared error (RMSE) in percent of the true α across

all draws per configuration of {N ;α} in Tables 3 and 4. Both tables are organized in three by two

blocks. Each horizontal block contains estimates for the models (SILS), (CF-OLS) and (RF-OLS)

for the cases N = {30; 60}. Vertically, we have three blocks corresponding to α = {−2;−4;−9}.
For each of the six blocks, we report on the estimated structural parameters α̂c and α̂t; as well as

δ̂ for CF-OLS, the coefficient on the control function.

Table 3 reports the results for the DGP without εij ; that is, only with the approximation error ηij
present: ujN = ηjN . In the absence of εij , both models (SILS) and (CF-OLS) correspond to the

true one so that both the bias and the RMSE for {α̂c; α̂c} in percent are zero. That is, the CF-OLS

estimator of the linearized gravity model is optimal in the sense of suffering zero efficiency loss due

to the linearization. Recall that conditioning on WNNzjN means conditioning on ηjN , according to

(6). Thus, all the linearization bias is picked up by the coefficient δ̂. Only the RF-OLS approach has

an estimation residual and therefore a non-zero variance under this DGP. The RF-OLS estimates

of α exhibit some bias, but both bias and RMSE are relatively small. For instance, the largest bias

in absolute value over all DGP settings and parameters is only -1.21 percent. Further, as expected,
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both the bias and the RMSE of {α̂c; α̂t} in percent decline as the number of countries rises. As the

number of countries increases, it has been shown that the need for controlling for general equilibrium

effects and nonlinear trade-cost effects as captured by mjN in (SILS) also declines (see Egger and

Staub, 2016).

Table 4 depicts results for the DGP with both approximation error and stochastic error: ujN =

ηjN + εjN . The biases for all three estimators are very small, with the maximum bias in absolute

value across all parameter configurations and estimators being 1 percent (for RF-OLS in the DGP

with α = −2 and N = 30). The simple CF-OLS estimator achieves RMSEs that are not much

larger than those of the more demanding iterative SILS procedure. Even the yet simpler RF-OLS,

while exhibiting the highest RMSE of the three estimators, does quite well by this performance

measure.

Finally, in Table 5, we present results where all estimators are based on exponentiated equations and

a Poisson (pseudo)-likelihood. The estimation quality deteriorates somewhat across all approaches

in that case. For SIP and CF-Pois (the Poisson versions of SILS and CF-OLS), the biases continue

to be small, with the maximum absolute bias for CF-Pois being about 2 percent. RMSEs are also

only moderately higher. With εij being homoscedastic normal, OLS estimation in logs is efficient, so

these results are expected. The reduced-form approach is not only dependent on εij but also on ηij ,

which is not only non-normal, but also not fully mean-independent of the regressors. The results in

the table show that, when exponentiated, the endogeneity is aggravated and RF-Pois suffers from

larger absolute biases of up to 9.28 percent. From the perspective of the linearization error ηij ,

this speaks for using the reduced-form approach in logs (RF-OLS) rather than in exponentiated

form (RF-Pois). In contrast, for the control-function approach the properties of the linearization

error are of little relevance, and the choice of CF-OLS or CF-Pois can be based entirely on other

considerations, such as the properties of the stochastic error.

5 Conclusions

This paper sheds light on the nature of structural linearized gravity models involving an endogenous

network-weighted lag – other countries’ population-share – of bilateral trade flows as developed in

Behrens, Ertur and Koch (2012). We demonstrate that the properties of the network model is such

that it can be estimated without any use of network-econometric tools. Exporter-population-share-

weighted log bilateral exports on the right-hand side of the models serve as a control function for the

approximation error of the linearization, and this variable can be included without specific treatment

(i.e., ignoring its endogeneity). These results should please the applied researcher, since estimation

of such linearized models only involves OLS (on log-transformed trade flows) with clustered standard

errors at the level of importers.
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Tables and figures

Figure 1: Scatterplot and linear fit of approximation error (ujN = ηjN ) and right-hand side

variables from a random draw of the DGP with α = −4 for N = 30
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Notes: The four panels of the figure display scatterplots of data obtained from one random draw of

the DGP with α = −4 for 30 countries (900 observations). The red line represents the fit from a linear

regression.
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Table 1: Analysis of variance for key model variables (mean sums of squares over 1,000 replications)

N = 30 N = 60

SS zij uij ci ẗij zij uij ci ẗij

α=−2
i (exporter) 112.26 0.00 14.99 20.47 370.46 0.00 52.21 77.74

j (importer) 112.26 68.40 0.00 29.39 370.46 171.00 0.00 95.89

residual 738.85 0.00 0.00 184.71 2398.63 0.00 0.00 599.66

total 963.38 68.40 14.99 234.58 3139.55 171.00 52.21 773.29

α=−4
i (exporter) 127.93 0.00 6.01 5.11 416.30 0.00 20.81 19.47

j (importer) 127.93 205.19 0.00 7.47 416.30 519.76 0.00 24.03

residual 737.95 0.00 0.00 46.12 2400.35 0.00 0.00 150.02

total 993.82 205.19 6.01 58.70 3232.95 519.76 20.81 193.52

α=−9
i (exporter) 139.89 0.00 1.63 1.01 458.94 0.00 5.64 3.84

j (importer) 139.89 949.64 0.00 1.48 458.94 2481.73 0.00 4.78

residual 737.95 0.00 0.00 9.11 2398.50 0.00 0.00 29.61

total 1017.72 949.64 1.63 11.60 3316.38 2481.73 5.64 38.23

Notes: SS refers to sum of squares. ẗij ≡ tij−
∑
i
Li
L
tij is a typical element of (INN−WNN )tjN .

Table 2: Partial correlation coefficients of model variables with approximation error ujN = ηjN

(mean and standard deviations over 1,000 replications)

N = 30 N = 60

Mean SD Mean SD

α=−2
WNNzjN 1.00 0.00 1.00 0.00

c̃N -0.00 0.00 0.00 0.00

ẗjN 0.06 0.14 0.06 0.10

α=−4
WNNzjN 1.00 0.00 1.00 0.00

c̃N -0.00 0.00 -0.00 0.00

ẗjN -0.01 0.19 -0.02 0.14

α=−9
WNNzjN 1.00 0.00 1.00 0.00

c̃N 0.00 0.00 -0.00 0.00

ẗjN -0.06 0.21 -0.08 0.17
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Table 3: Average bias and root mean squared error of estimated model parameters (1,000 replica-

tions): DGP with approximation error only: ujN = ηjN

N = 30 N = 60

SILS CF-OLS RF-OLS SILS CF-OLS RF-OLS

α=−2
α̂w Bias -0.00 0.00 -1.21 -0.00 -0.00 -0.76

RMSE 0.00 0.00 2.05 0.00 0.00 1.28

α̂t Bias -0.00 -0.00 -0.79 -0.00 -0.00 -0.60

RMSE 0.00 0.00 1.56 0.00 0.00 1.05

δ̂ Bias – -150.00 – – -150.00 –

RMSE – 150.00 – – 150.00 –

α=−4
α̂w Bias -0.00 0.00 -0.81 -0.00 -0.00 -0.36

RMSE 0.00 0.00 1.67 0.00 0.00 0.99

α̂t Bias -0.00 -0.00 -0.13 -0.00 -0.00 0.08

RMSE 0.00 0.00 1.80 0.00 0.00 1.24

δ̂ Bias – -125.00 – – -125.00 –

RMSE – 125.00 – – 125.00 –

α=−9
α̂w Bias -0.00 -0.00 -0.60 -0.00 0.00 -0.16

RMSE 0.00 0.00 1.46 0.00 0.00 0.91

α̂t Bias -0.00 0.00 0.40 -0.00 0.00 0.64

RMSE 0.00 0.00 2.25 0.00 0.00 1.74

δ̂ Bias – -111.11 – – -111.11 –

RMSE – 111.11 – – 111.11 –

Notes: Columns SILS, CF-OLS, and RF-OLS refer to structural iterative

least squares, control-function OLS and reduced-form OLS estimates of models

(SILS), (CF-OLS) and (RF-OLS) in Section 4.3. Table entries are average

biases and root mean squared errors in percent of the true α.
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Table 4: Average bias and root mean squared error of estimated model parameters (1,000 replica-

tions): DGP with approximation error and stochastic error: ujN = ηjN + εjN

N = 30 N = 60

SILS CF-OLS RF-OLS SILS CF-OLS RF-OLS

α=−2
α̂w Bias 0.20 -0.00 -1.00 -0.03 -0.18 -0.80

RMSE 4.13 4.11 4.49 1.70 1.70 2.10

α̂t Bias 0.01 -0.07 -0.79 0.01 -0.12 -0.59

RMSE 1.00 1.11 1.76 0.43 0.59 1.13

δ̂ Bias – -128.50 – – -128.95 –

RMSE – 129.33 – – 129.51 –

α=−4
α̂w Bias 0.20 0.12 -0.61 -0.05 -0.04 -0.41

RMSE 3.32 3.30 3.62 1.38 1.38 1.68

α̂t Bias 0.00 0.33 -0.14 0.00 0.24 0.09

RMSE 1.04 1.37 1.99 0.45 0.77 1.31

δ̂ Bias – -114.20 – – -114.57 –

RMSE – 114.42 – – 114.72 –

α=−9
α̂w Bias 0.15 0.12 -0.45 -0.05 0.03 -0.20

RMSE 2.94 2.94 3.22 1.22 1.22 1.51

α̂t Bias 0.00 0.63 0.39 0.00 0.50 0.65

RMSE 1.06 1.67 2.41 0.46 1.01 1.80

δ̂ Bias – -106.46 – – -106.70 –

RMSE – 106.51 – – 106.73 –

Notes: Columns SILS, CF-OLS, and RF-OLS refer to structural iterative

least squares, control-function OLS and reduced-form OLS estimates of models

(SILS), (CF-OLS) and (RF-OLS) in Section 4.3. Table entries are average

biases and root mean squared errors in percent of the true α.
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Table 5: Poisson PML estimators — Average bias and root mean squared error of estimated

model parameters (1,000 replications): DGP with approximation error and stochastic error (ujN =

ηjN + εjN )

N = 30 N = 60

SIP CF-Pois RF-Pois SIP CF-Pois RF-Pois

α=−2
α̂w Bias 0.31 -2.15 -9.28 0.02 -1.94 -7.08

RMSE 6.69 5.70 13.62 2.65 3.00 9.18

α̂t Bias 0.07 -1.46 -6.00 0.03 -1.32 -4.49

RMSE 3.36 2.78 7.90 1.13 1.82 5.27

δ̂ Bias – -129.90 – – -130.49 –

RMSE – 130.60 – – 130.95 –

α=−4
α̂w Bias 0.28 -1.78 -7.92 -0.01 -1.60 -5.99

RMSE 5.65 4.61 11.61 2.21 2.46 7.91

α̂t Bias 0.09 -0.37 -4.05 0.02 -0.46 -2.75

RMSE 3.83 2.86 7.59 1.24 1.49 4.55

δ̂ Bias – -115.05 – – -115.28 –

RMSE – 115.23 – – 115.41 –

α=−9
α̂w Bias 0.24 -1.64 -7.41 -0.02 -1.40 -5.56

RMSE 5.28 4.12 10.66 1.97 2.17 7.32

α̂t Bias 0.11 0.39 -2.58 0.02 0.19 -1.36

RMSE 4.44 3.48 8.08 1.34 1.73 4.80

δ̂ Bias – -106.92 – – -107.02 –

RMSE – 106.95 – – 107.05 –

Notes: Columns SIP, CF-Pois, and RF-Pois refer to structural iterative Pois-

son PML, control-function Poisson PML and reduced-form Poisson PML esti-

mates of (exponentiated versions of) models (SILS), (CF-OLS) and (RF-OLS)

in Section 4.3. Table entries are average biases and root mean squared errors

in percent of the true α.
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Appendix. Generic gravity models with constant markups

Arkolakis et al. (2012) demonstrate the generic structure of a host of gravity-model types featuring constant markups,

where output prices change in response to trade costs exclusively due to endogenous adjustments in costs but not

markups. Models which fall in this class are Dixit-Stiglitz-Krugman type models of monopolistically competitive firms

(see, e.g., Bergstrand et al., 2013 for a multi-country gravity version of this type), Ricardian models with perfectly

competitive firms (see Eaton and Kortum, 2002), and Armington endowment-economy models (see Anderson and

van Wincoop, 2003). All of these models fundamentally adhere to the structure in (1), and what they differ by are

only the interpretations of Li, Ci, and α (the so-called trade elasticity).

While α is directly related to the elasticity of produced varieties—of firms in Dixit-Stiglitz-Krugman models and of

countries in Anderson-van-Wincoop models—it measures the production-cost (or productivity) dispersion among the

potential producers any country.

Li is a measure of factor endowments (and firm numbers) in Dixit-Stiglitz-Krugman models, a measure of preference-

scaled factor or goods endowments in Anderson-van-Wincoop models, and a measure of average country-level pro-

ductivity in Eaton-Kortum models. It can generally be obtained when normalizing (dividing) country i’s aggregate

sales value (in most models GDP) Yi by Ci.

Ci are the costs per unit of Li. It can be wages in a Dixit-Stiglitz-Krugman model, where Li is a country’s labor

endowment. If Li is a factor bundle, Ci measures the unit costs of the bundle (e.g., a Cobb-Douglas aggregate of

observed factor costs). This is the same in an endowment-economy model, if Li measures the labor endowment. If

Li is a preference-scaled endowment with goods or a scaled Armington parameter as in Anderson and van Wincoop

(2003), Ci measures the unit value or price (per exported unit of good). in Eaton-Kortum models, Ci also measures

the variable factor costs per unit of output, as in a Dixit-Stiglitz-Krugman framework.

For all these models, the numerator in the expression of Zij in equation (1) is log-additive, while the denominator,

to be interpreted as the −α-scaled log of the ideal consumer price in j, is not log-linear. The latter is in the focus of

BEK’s linearization. Because all of the mentioned models feature a price index of this form, BEK’s linearization is a

powerful tool for everyone of them.

All of the mentioned gravity models—with different interpretations of {Li, Ci, α}—have the original form for nominal

bilateral exports of

Xij =
LiC

α
i T

α
ij∑

k=1 LkC
α
k T

α
kj

Yj . (1)

What this equation says is that bilateral purchases or expenditures are proportional to the aggregate level of ex-

penditures in a country. Note that the ratio term appearing in (1) allocates these expenditures across all sources,

including the domestic market. After dividing both sides of (1) by Yj , we arrive at equation (10) in Eaton and

Kortum (2002). Moreover, we see that (1) has exactly the structural form given in equations (6) and (7) in Anderson

and van Wincoop (2003). And the form is the same as in equation (9) in Bergstrand et al. (2013).7

Using Zij = Xij/(LiCiYj), we arrive at equation (1) and the corresponding right-hand side of the model given there

(we have used the short hand of LiCi = Yi, there). This expression is used by Behrens et al. (2012). Log-transforming

(1) and linearizing it in the point where α = 0, Behrens et al. (2012) arrive at equation (2) in the main text above.

7As said, what is called {Li, Ci} here would be {Tici} in Eaton and Kortum (2002), it would be {βαi , pi} in

Anderson and van Wincoop (2003), and it would be {Li, wi} with wi = Yi/Li in Bergstrand et al. (2013).
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