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Abstract

This paper studies structural network gravity models à la Behrens, Ertur and Koch (2012).
Such models provide an elegant linearization of nonlinear structural gravity models of inter-
national trade, and have a wide range of other applications to bilateral flow data such as
investments and migration. In the context of trade, these models have the desirable feature
that they account for so-called multilateral resistance (or aggregate price index) terms in a
theory-consistent way. Earlier research had proposed applying network-econometric techniques
for estimating such models. We exploit the structure of the model to propose simple alternative
estimators that do not require any specific network methods, making the structural network
model amenable to broader use by practitioners. We show that all structural model parameters
can be recovered from a linear OLS regression that uses a properly-weighted average of the de-
pendent variable as a control function. Our control-function approach can also be implemented
with simple nonlinear estimators instead of OLS, such as Poisson pseudo maximum likelihood
or other generalized linear model estimators.
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1 Introduction

The gravity equation—describing aggregate demand for goods or services between any pair of

countries—is among the most successful concepts in all of economics (see Leamer and Levinsohn,

1995). Its popularity derives from the fact that it nests a wide variety of isomorphic structural

models of aggregate bilateral demand such as endowment-economy, Ricardian, and monopolistic-

competition-increasing-returns-to-scale (see Eaton and Kortum, 2002; Anderson and van Wincoop,

2003; Arkolakis, Costinot and Rodríguez-Clare, 2012; Bergstrand, Egger and Larch, 2013; Baltagi,

Egger and Pfaffermayr, 2015).

The main reason why gravity equations are rarely estimated in their structural form is that they

are highly nonlinear even after taking logarithms. Rather, practitioners use either country fixed

effects, which may be inefficient, or theory-based linear approximations in estimation. Behrens,

Ertur and Koch (2012, henceforth BEK) introduced such a linearization in a quantity-based version

of a constant elasticity of substitution model, where price indices are themselves implicit functions

of trade flows. The linearized equilibrium system leads to an econometric specification in which

trade flows between two countries depend on trade flows between all other trading partners, thus

exhibiting the characteristics of a network-weighted model. To deal with this interdependence

among observations, BEK adapt methods from the literature on network econometrics that account

for simultaneous, cross-sectionally autoregressive structures. While the model has since been widely

adopted, an existing barrier to its further dissemination lies in the network-based estimation, which

requires either the availability of instrumental variables or the implementation of computationally

intensive maximum likelihood procedures.

In this paper, we propose estimators that exploit the structural form of the same network model to

recover the model’s structural parameters. In contrast to the previous network-based approach to

estimating the model, the proposed estimators are simple OLS (or Poisson PML—pseudo maximum

likelihood) estimators. In our preferred proposed approach, the network structure is fully captured

through the inclusion of an appropriate regressor that serves as a control function for the endogeneity

resulting from the model’s network structure. As a result, the proposed estimator is fully efficient

in the sense of there not being any efficiency loss due to estimating the linear approximation rather

than the true non-linearized model. Constructing this control function is straightforward as it is

just a weighted average of the data and does neither require instruments nor additional estimation

steps. Therefore, the proposed alternative estimators are easily implementable in practice, providing

a low-cost way for practitioners to estimate this popular structural network gravity model, either

applied to international trade flows as in the original BEK paper, or applied to other bilateral flow

data such as immigration or financial investment.

We examine the properties of the structural gravity model and this linearization as well as the

finite sample performance of the estimators in a series of numerical Monte Carlo experiments. The

simulation data are obtained by randomly drawing exogenous variables from real-world data and
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then solving for endogenous variables according to the theory-based structural general equilibrium

model. As we show theoretically and confirm in the simulations, the only source of bias in a

proposed reduced-form OLS estimation stems from the original linearization of the model. Overall,

the simulation results demonstrate that these biases are moderate and shrink towards zero with

increasing sample size. Moreover, the preferred new control-function OLS approach does not suffer

from this linearization bias and is unbiased in all sample sizes.

We continue with presenting BEK’s trade network model in Section 2, and show how this model

can be estimated by linear (or generalized linear) methods in Section 3. A numerical assessment of

the estimators is provided in Section 4, followed by our conclusions in Section 5.

2 A linearized structural network gravity model of trade

We consider a standard gravity equation derived from utility maximization subject to income con-

straints, which can be represented for exporter i and importer j as

Zij ≡
Xij

YiYj
=

Wα−1
i Tαij∑N

k=1 LkW
α
k T

α
kj

, Wi = L−1i

N∑
j=1

Xij =
N∑
j=1

Wα
i T

α
ijWjLj∑N

k=1 LkW
α
k T

α
kj

. (1)

Here, Zij are aggregate bilateral exports, Xij , normalized by exporter and importer GDP, Yi and Yj ,

respectively. The variable Wi represents wages or producer prices, Tij are bilateral trade costs, and

Li is population or size of the labor force (see Arkolakis, Costinot and Rodríguez-Clare, 2012).

As mentioned, (1) is compatible with a variety of aggregate bilateral demand models such as

endowment-economy, Ricardian, and monopolistic-competition-increasing-returns-to-scale.

Equation (1) shows that the log of Zij , zij , is a log-nonlinear function of {Wi;Tij ;Li}. The key

structural parameter α = (−∞, 0) reflects the partial response of trade with respect to changes in

trade costs (see Dixit and Stiglitz, 1977, or Eaton and Kortum, 2002). Through (1), upon choice of

a numéraire wage (W1 = 1) and for a given α, the N − 1 endogenous values of Wi are determined

by N − 1 equations for given (exogenous) values of Li and Tαij .
1

BEK take the logarithm of equation (1) and derive a first-order approximation around the point

α = 0. To provide a compact notation, let us generally use the convention that lower-case letters

refer to variables in logarithms and refer to N -size vectors and square matrices by subscripts N and

NN , respectively. Letting the world population be denoted by L ≡
∑N

k=1 Lk, define the following

matrices:

(i) WNN which in column j contains the same elements Lj/L in all the rows,
1In BEK’s parametrization the size of countries is parameterized by the endowment Li. In an Eaton-Kortum

Ricardian economy this would be productivity, and in an Armington economy it would be a preference shifter. For

the purpose of the arguments in this paper, these differences are only semantic.
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(ii) DNN = diagN (Lj/L) which contains the diagonal elements of WNN ,

(iii) W̃NN ≡WNN −DNN , and

(iv) the identity matrix INN .

Then, stacking all observations across exporters i for a given importer j in zjN = (zij), lN = (l),

0wN = (wi) and tjN = (tij), BEK arrive at the log-transformed and linearized counterpart to (1):

zjN = αWNNzjN + (α− 1)(lN + wN ) + α(INN −WNN )tjN + ujN , (2)

where ujN is the approximation error due to linearization, which only varies across j but not i.2,3

In its role as coefficient on WNNzjN , BEK refer to α in equation (2) as the autoregressive inter-

action coefficient which captures the interdependence across trade flows and provides an intuitive

network measure of ‘spatial competition.’ It is customary in empirical work to further specify

tij =
∑H

h=1 γhdh,ij , where dh,ij are observable variables in logs such as bilateral log-distance. What

is then estimated on dh,ij are the compound parameters αγh.

The reduced form that directly corresponds to (2) is

zjN = (INN − αWNN )
−1[(α− 1)(lN + wN ) + α(INN −WNN )tjN + ujN ]. (3)

Existence of the latter requires (INN − αWNN ) to have finite elements and to be invertible inde-

pendent of the number of countries N , a property which we will discuss below. Continuing from

(2), BEK reformulate the model to obtain alternate structural and reduced forms

zjN = (INN − αDNN )
−1

×[αW̃NNzjN + (α− 1)(lN + wN ) + α(INN −WNN )tjN + ujN ], (4)

zjN = [INN − α(INN − αDNN )
−1W̃NN ]

−1(INN − αDNN )
−1

×[(α− 1)(lN + wN ) + α(INN −WNN )tjN + ujN ], (5)

respectively. The presence of (INN − αDNN )
−1 in (4) makes the model nonlinear in α. BEK

propose estimating a model with right-hand side variables {W̃NNzjN ; (lN+wN ); (INN−WNN )tjN},
2This is equation (11) in BEK. The notation in BEK uses the parametrization α ≡ 1−σ and stacks further across

all j.
3After defining Y ≡

∑N
i=1 Yi, at the approximation point α = 0 of the model, we obtain Xij =

LiYj

L
and

Yi =
∑N

j=1Xij = LiY
L

, which implies wage equalization, Wi = W . Choosing the wage as the numéraire, we obtain

Xij =
LiLj

L
. Then, trade costs are irrelevant, and the variance of log bilateral exports, xij = lnXij , is fully determined

by the variation in exporter- and importer-specific log labor endowments (or population) across countries or regions

i and j.
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which they denote a heterogeneous coefficients model since the coefficients on these variables are

proportional to (1 − αLi/L)
−1. Such a model is “econometrically complex to handle” (BEK).

Therefore, BEK proposed estimating a model that ignores the heterogeneity and constrains the

coefficients to be constant. This approach is inconsistent, but might provide a useful first benchmark.

A second approach proposed by BEK is to estimate the model for each i separately. This approach

is consistent, but it is inefficient.

3 Properties of the linearized network model and novel insights

The alternative estimators of the linearized network gravity model that we propose are based on

the identity of the reduced forms (5) and (3), which suggests that approaches other than the

reformulation in (4) can be used to estimate the network-weighted model. To see this, notice that

[INN − α(INN − αDNN )
−1W̃NN ]

−1(INN − αDNN )
−1 = (INN − αWNN )

−1.

The matrix (INN − αWNN ) is invertible for any finite α 6= 1 as then it has full rank. As α = 1

is outside the theoretically admissible parameter space, invertibility is not a concern. Since WNN

is idempotent so that W 2
NN = WNN , the inverse (INN − αWNN )

−1 = INN + α
1−αWNN , and

WNN (INN − αWNN )
−1 = 1

1−αWNN .

Moreover, since neither ujN nor lN vary across exporters i, WNNujN = ujN and WNN lN = lN .

Therefore,

WNNzjN = −WNN (lN + wN ) +
1

1− α
ujN , (6)

where −WNN (lN +wN ) is a constant. This result has important consequences for the econometric

approaches to estimate this network gravity model proposed in the literature which are based

on two-stage least-squares estimators in the spirit of Kelejian and Prucha (1998), Lee (2003), or

Kelejian, Prucha and Yuzefovich (2004). Two-stage least-squares approaches require instruments for

WNNzjN which satisfy the exogeneity assumption. Equation (6) shows that there are no suitable

instruments for WNNzjN in this model. The nature of {WNN , lN , wN , ujN} and the parameter

restrictions in the model imply that all of the variation in WNNzjN is due to the approximation

error, ujN . Therefore, no instrument can be correlated with WNNzjN and uncorrelated with ujN .

Finally, replacing WNNzjN in (2) by the right-hand side in (6) and adding lN + wN on both sides

of the equation results in

z̃jN ≡ zjN + lN + wN = α(INN −WNN )(wN + tjN ) +
1

1− α
ujN , (7)

an alternative form for the linearized model. We use equations (6) and (7) to propose two new

simple estimation approaches for the linearized network model.
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Reduced-form OLS

First, as we showed, (1) can be represented by (7), which relies exclusively on network-weighted

exogenous variables, but not on network-weighted lags of the dependent variable or the disturbances.

While omitting a relevant network-weighted average of the dependent variable from the right-hand

side of a model usually leads to an omitted variables bias, this is not the case here. Omitting

αWNNzjN from the right-hand side of (2) has only two consequences for equation (7): a rescaling of

the constant and of the error term in (7) relative to (2). Therefore, the structural model parameters

α and γ can be recovered by estimating the linear regression model

z̃jN = αw ẅN +

H∑
h=1

βhd̈h,jN + ũjN (8)

by OLS, where ẅN = (INN −WNN )wN , d̈h,jN = (INN −WNN )dh,jN , and ũjN = ujN/(1−α). The
OLS coefficient on ẅ, αw, estimates α. The coefficients on the (network-weighted) observable vari-

ables that parametrise bilateral trade costs, d̈jN , estimate βh = αγh.4 These composite parameters

might be of independent interest. If not, a consistent estimator of γh can be obtained as γ̂h = β̂h/α̂.

Since the approximation error ujN—and therefore also the regression error ũjN—varies only across

importers j and exclusively depends on exogenous model variables and parameters, it appears

natural to specify it as heteroskedastic and clustered by exporting country i. Hence, inference after

estimation of (8) should rely on cluster-robust standard errors. This is a substantially simpler

approach than the econometric models employed in BEK, paving the way for a wider use of the

proposed linearization. The model can be estimated for all countries jointly for the sake of efficiency

gains without any violation of the model assumptions. We denote this approach as RF-OLS, for

reduced-form OLS.

Control-function OLS

Our second approach is based directly on equation (2). To the extent that the approximation error

ujN is correlated with wN or (INN −WNN )tjN , it may be preferable to estimate (2) instead of using

RF-OLS. That is to estimate the structural model parameters from the linear regression model

z̃jN = αww̃N +
H∑
h=1

βhd̈h,jN + δWNNzjN + ujN , (9)

by OLS, where w̃N = lN + wN and, similar to the case of RF-OLS, the coefficient αw on the

regressor w̃N estimates the key structural parameter α, and the coefficients on the regressors d̈h,jN
estimate βh = αγh. The reason for preferring this approach is that WNNzjN depends linearly on

4The model can be estimated with a constant by including a regressor d1,jN = 1 in the specification of trade costs

with β1 then being the constant.
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ujN according to (6) and, hence, fully controls for the linearized gravity model’s approximation

error. This implies that WNNzjN is a control function. Its parameter absorbs the potential bias

from the correlation of the other regressors with ujN . Because of this, the parameter δ on WNNzjN

should not be interpreted as an estimator for α. As in the previous case, inference should rely on

exporter-clustered standard errors. We denote this approach as CF-OLS, for control-function OLS.

Both of our suggested approaches can also be implemented as generalized linear model (GLM)

estimations. That is, instead of using OLS, equations (8) and (9) can also be estimated via Poisson

pseudo-likelihood estimation or other GLM procedures (see Santos Silva and Tenreyro, 2006) with

appropriate exporter-cluster-robust standard errors. For instance, the control-function approach

could be based on the exponential of equation (9),

Z̃jN = exp(αww̃N +
H∑
h=1

βhd̈h,jN + δWNNzjN )ηjN , (10)

where Z̃jN = exp(z̃jN ) and ηjN = exp(ujN ), and the parameters {αw, β1, . . . , βH , δ} are estimated

by Poisson regression of Z̃jN on {w̃N , d̈1,jN , . . . , d̈H,jN ,WNNzjN}.

4 Monte Carlo experiments

4.1 Design of experiments

We construct worlds of countries and country pairs according to (1) where everything is known to

the simulator, while the researcher does not know the parameters on the regressors. We consider

two configurations regarding country numbers, N ∈ {30; 60}, leading to numbers of country pairs

of N2 ∈ {900; 1, 600}. This corresponds to typical data situations found in empirical structural

work on gravity models (see Eaton and Kortum, 2002; Anderson and van Wincoop, 2003; Balistreri

and Hillberry, 2007; Behrens, Ertur and Koch, 2012). For each of these worlds, we consider three

configurations α ∈ {−2;−4;−9}, which are supported quantitatively by a sizeable body of work

(see Arkolakis, Costinot and Rodríguez-Clare, 2012). Hence, there are six parameter configurations.

For each of them, we randomly draw 1, 000 independent vectors of bilateral distances with typical

element DISTij and population sizes with typical element Li from the empirical distribution of

these variables as published by the Centre d’Études Prospectives et d’Informations Internationales

for DISTij and by the World Bank’s World Development Indicators for Li (using the year 2007).

We parametrise bilateral trade costs as tij = distγdistij , where distij is the logarithm of DISTij . In

line with the robust result of a coefficient on log distance of about βdist = αγdist = −1 in empirical

gravity models, we assume that log distance is related to log trade costs tij by a parameter of

γdist = −1/α. Based on the draws for Li and tij , the endogenous variables Wi and Xij are solved

by contraction-mapping based on (1).
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4.2 Features of model variables and the approximation error

Before turning to estimation, it is useful to study some moments and the correlations of key variables

in the model across all experiments. For this purpose, we report on the averages of an analysis of

variance of some key variables in Table 1 and on average partial correlation coefficients in Table

2, each of them computed across all 1,000 draws within one of the six parameter configurations in

{N ;α}.

Table 1 reports on sums of squares of key model variables. It reports the total variation in each of

the variables (row ‘total’), as well as a decomposition of the total into variation across exporters

(row ‘i’), importers (row ‘j’) and across ‘ij’, i.e., the bilateral variation (row ‘residual’). The table

reveals that the (total) variation in the approximation error, uij , is large relative to normalized

bilateral exports in logs, zij . Its size rises with the absolute level of α; i.e., with the distance to the

approximation point used by BEK to linearize the model (α = 0).

The approximation error varies to a greater degree than log wages, wN , whose variance is the same

as that of ẅN = (INN −WNN )wN . The relative magnitude of the sum of squares of uij relative to

that of zij declines as N , the number of countries, rises. The variance of (INN −WNN )tjN , with

typical element ẗij , is important relative to that of wN . But its importance relative to ujN depends

on being closer to the approximation point for α. Clearly, while the exporter- and importer-specific

components in tij are symmetric by design (log-distance is symmetric), those of ẗij are not. The

pair-specific component of ẗij naturally dominates the country-specific ones. Finally, as was clear

from the theoretical derivations from the previous section, the variation in uij is purely importer-

specific. This is because BEK’s approximation is about an importer-specific term, the log ideal

consumer-price index.

Table 2 shows that there is a perfect correlation between the elements of WNNzjN and the ones of

the approximation error, ujN , consistent with equation (6). There is some small correlation between

ẗjN = (INN −WNN )tjN and ujN . This means that in estimations where ẗjN is a regressor, the

coefficient on ẗjN may exhibit some bias unless we condition onWNNzjN (which means conditioning

on ujN , as mentioned before). This problem becomes more pertinent if the approximation error is

larger, which is the case with a bigger absolute value of α.

Figure 1 visualizes the relationships in Table 2 based on one specific random draw for N = 30 and

α = −4. There are four general insights from an inspection of Figure 1 in conjunction with Table

2. First, the upper left panel of the figure documents that WNNzjN is indeed perfectly correlated

with ujN as suggested by equation (6). Second, all of the panels in Figure 1 illustrate the block

structure of ujN which means it is not independently and identically distributed. Third, while the

correlation between ujN and the other right-hand side model variables is weak on average, it may

be stronger depending on the specific configuration of trade costs (tjN ) and population size (WNN ).

From Table 2 we know that the risk of correlation between model variables and ujN is higher for

ẗjN than for wN . Figure 1, for instance, illustrates a case where (INN −WNN )tjN is negatively and
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(α− 1)(lN +wN ) + α(INN −WNN )tjN is positively correlated with ujN . In such a case, we would

expect the estimated parameter on ẗjN to be biased if we do not address the endogeneity with a

control function. Altogether we would expect a larger root-mean-squared error for the estimated

parameter on this variable than on wN or ẅN , unless one controls for ujN .

4.3 Parameter estimation

We compare the estimation of the linearized network gravity model via our two approaches RF-OLS

and CF-OLS. To benchmark these estimators, we also compare them to a structural estimation of

the original, non-linearized gravity model through an iterative least squares procedure. For this

procedure, the dependent variable can also be defined as z̃jN = zjN + lN + wN , where zjN are

normalized trade flows, which is the same as in the proposed RF-OLS and CF-OLS procedures.

Taking the log of (1), the structural model results in

z̃jN = α0 + αww̃N + αttjN −MjN , (SILS)

where w̃N = lN + wN and the log-nonlinear term is defined as MjN ≡
(
ln(
∑N

k=1 LkW
α
k T

α
kj)
)
. The

model can be estimated by structural iterative least squares (cf. Anderson and van Wincoop, 2003),

which we denote by SILS. In our implementation of SILS, for an initial guess of M̂jN , the coefficients

appearing in equation (SILS) can be estimated by an OLS regression of z̃jN + M̂jN on a constant,

w̃N , and tjN . These coefficients can be used to obtain an updated estimate of M̂jN , which in turn

can be used to perform an updated OLS regression. These steps are iterated until the values of the

estimated coefficients converge (do not change anymore beyond some small threshold). Note that

there is no error term in this model, since no approximation has been applied to it (and we did not

add a stochastic term beyond the structural model). In that sense, SILS here is an algorithm to

solve for the model parameters, rather than to estimate them.

The two estimators of the linearized gravity equation which leads to a network model are based on

the following estimating equations

z̃jN = α0 + αww̃N + αtẗjN + δWNNzjN + ujN , (CF-OLS)

z̃jN = α0 + αwẅN + αtẗjN + ũjN , (RF-OLS)

which, as discussed in Section 2, can be estimated by simple OLS. For all three models—(SILS),

(CF-OLS) and (RF-OLS)—we only present an unconstrained parameter-estimation version each,

which does not enforce that αw = α and αt = αγdist are identical due to the chosen parametrization.

We do so to mimic the situation of an empirical researcher who does not observe tij but only distij .

The estimated parameters {α̂w; α̂t} should be close to the true α, especially, when being based on

models (SILS) or (CF-OLS). While in the latter model there is an approximation error, we saw in

Section 2 that the control function WNNzjN accounts fully for it (that is, not just in expectation,

as is typically the case with control function approaches; see, e.g., Wooldridge, 2015).
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Apart from a data generating process (DGP) where the structural nonlinear model (SILS) is true,

we consider a second DGP with an additional stochastic error term εjN ,

z̃∗jN = z̃jN + εjN = α0 + αw(lN + wN ) + αttjN −MjN + εjN ,

with εij ∼ i.i.d.N(0, σ2ε). We calibrate σ2ε such that, in each experiment, the explanatory power as

measured by the R2 is 80% (= (1 − σ2ε/σ2z̃∗) × 100%), which is representative of a vast amount of

empirical work on gravity models. The term εij adds stochastics in a narrow sense which provides for

a residual with Models (SILS) and (CF-OLS) and one beyond the approximation (or linearization)

error in Model (RF-OLS).

We report on the average bias and root-mean-squared error (RMSE) in percent of the true α across

all draws per configuration of {N ;α} in Tables 3 and 4. Both tables are organized in three by two

blocks. Each horizontal block contains estimates for the models (SILS), (CF-OLS) and (RF-OLS)

for the cases N = {30; 60}. Vertically, we have three blocks corresponding to α = {−2;−4;−9}.
For each of the six blocks, we report on the estimated structural parameters α̂w and α̂t; as well as

δ̂ for CF-OLS, the coefficient on the control function.

Table 3 reports the results for the DGP without εij ; that is, only with the approximation error uij
present. In the absence of εij , both models (SILS) and (CF-OLS) correspond to the true one so

that both the bias and the RMSE for {α̂w; α̂w} in percent are zero. That is, the CF-OLS estimator

of the linearized gravity model is optimal in the sense of suffering zero efficiency loss due to the

linearization. Recall that conditioning on WNNzjN means conditioning on ujN , according to (6).

Thus, all the linearization bias is picked up by the coefficient δ̂. Only the RF-OLS approach has

an estimation residual and therefore a non-zero variance under this DGP. The RF-OLS estimates

of α exhibit some bias, but both bias and RMSE are relatively small. For instance, the largest bias

in absolute value over all DGP settings and parameters is only -1.21 percent. Further, as expected,

both the bias and the RMSE of {α̂w; α̂t} in percent decline as the number of countries rises. As the

number of countries increases, it has been shown that the need for controlling for general equilibrium

effects and nonlinear trade-cost effects as captured by MjN in (SILS) also declines (see Egger and

Staub, 2016).

Table 4 depicts results for the DGP with both approximation error and linearization error. The

biases for all three estimators are very small, with the maximum bias in absolute value across all

parameter configurations and estimators being 1 percent (for RF-OLS in the DGP with α = −2
and N = 30). The simple CF-OLS estimator achieves RMSEs that are not much larger than those

of the more demanding iterative SILS procedure. Even the yet simpler RF-OLS, while exhibiting

the highest RMSE of the three estimators, does quite well by this performance measure.

Finally, in Table 5, we present results where all estimators are based on exponentiated equations and

a Poisson (pseudo)-likelihood. The estimation quality deteriorates somewhat across all approaches

in that case. For SIP and CF-Pois (the Poisson versions of SILS and CF-OLS), the biases continue

to be small, with the maximum absolute bias for CF-Pois being about 2 percent. RMSEs are also
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only moderately higher. With εij being homoscedastic normal, OLS estimation in logs is efficient, so

these results are expected. The reduced-form approach is not only dependent on εij but also on uij ,

which is not only non-normal, but also not fully mean-independent of the regressors. The results in

the table show that, when exponentiated, the endogeneity is aggravated and RF-Pois suffers from

larger absolute biases, ranging up to 9.28 percent. From the perspective of the linearization error,

this speaks for using the reduced-form approach in logs (RF-OLS) rather than in exponentiated form

(RF-Pois). In contrast, for the control-function approach the properties of the linearization error

are of little relevance, and the choice of CF-OLS or CF-Pois can be based on other considerations,

such as the properties of the stochastic error.

5 Conclusions

This paper sheds light on the nature of structural linearized gravity models involving an endogenous

network-weighted lag – other countries’ population-share – of bilateral trade flows as developed in

Behrens, Ertur and Koch (2012). We demonstrate that the properties of the network model is such

that it can be estimated without any use of network-econometric tools. Exporter-population-share-

weighted log bilateral exports on the right-hand side of the models serve as a control function for the

approximation error of the linearization, and this variable can be included without specific treatment

(i.e., ignoring its endogeneity). These results should please the applied researcher, since estimation

of such linearized models only involves OLS (on log-transformed trade flows) with clustered standard

errors at the level of exporters.
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Tables and figures

Figure 1: Scatterplot and linear fit of approximation error (u) and right-hand side variables from

a random draw of the DGP with α = −4 for N = 30
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Notes: The four panels of the figure display scatterplots of data obtained from one random draw of

the DGP with α = −4 for 30 countries (900 observations). The red line represents the fit from a linear

regression.
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Table 1: Analysis of variance for key model variables (mean sums of squares over 1,000 replications)

N = 30 N = 60

SS zij uij wi ẗij zij uij wi ẗij

α=−2

i (exporter) 112.26 0.00 14.99 20.47 370.46 0.00 52.21 77.74

j (importer) 112.26 68.40 0.00 29.39 370.46 171.00 0.00 95.89

residual 738.85 0.00 0.00 184.71 2398.63 0.00 0.00 599.66

total 963.38 68.40 14.99 234.58 3139.55 171.00 52.21 773.29

α=−4

i (exporter) 127.93 0.00 6.01 5.11 416.30 0.00 20.81 19.47

j (importer) 127.93 205.19 0.00 7.47 416.30 519.76 0.00 24.03

residual 737.95 0.00 0.00 46.12 2400.35 0.00 0.00 150.02

total 993.82 205.19 6.01 58.70 3232.95 519.76 20.81 193.52

α=−9

i (exporter) 139.89 0.00 1.63 1.01 458.94 0.00 5.64 3.84

j (importer) 139.89 949.64 0.00 1.48 458.94 2481.73 0.00 4.78

residual 737.95 0.00 0.00 9.11 2398.50 0.00 0.00 29.61

total 1017.72 949.64 1.63 11.60 3316.38 2481.73 5.64 38.23

Notes: SS refers to sum of squares. ẗij ≡ tij−
∑

i
Li
L
tij is a typical element of (INN −WNN )tjN .

Table 2: Partial correlation coefficients of model variables with approximation error ujN (mean

and standard deviations over 1,000 replications)

N = 30 N = 60

Mean SD Mean SD

α=−2

WNNzjN 1.00 0.00 1.00 0.00

w̃N -0.00 0.00 0.00 0.00

ẗjN 0.06 0.14 0.06 0.10

α=−4

WNNzjN 1.00 0.00 1.00 0.00

w̃N -0.00 0.00 -0.00 0.00

ẗjN -0.01 0.19 -0.02 0.14

α=−9

WNNzjN 1.00 0.00 1.00 0.00

w̃N 0.00 0.00 -0.00 0.00

ẗjN -0.06 0.21 -0.08 0.17
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Table 3: Average bias and root mean squared error of estimated model parameters (1,000 replica-

tions): DGP with approximation error only

N = 30 N = 60

SILS CF-OLS RF-OLS SILS CF-OLS RF-OLS

α=−2

α̂w Bias -0.00 0.00 -1.21 -0.00 -0.00 -0.76

RMSE 0.00 0.00 2.05 0.00 0.00 1.28

α̂t Bias -0.00 -0.00 -0.79 -0.00 -0.00 -0.60

RMSE 0.00 0.00 1.56 0.00 0.00 1.05

δ̂ Bias – -150.00 – – -150.00 –

RMSE – 150.00 – – 150.00 –

α=−4

α̂w Bias -0.00 0.00 -0.81 -0.00 -0.00 -0.36

RMSE 0.00 0.00 1.67 0.00 0.00 0.99

α̂t Bias -0.00 -0.00 -0.13 -0.00 -0.00 0.08

RMSE 0.00 0.00 1.80 0.00 0.00 1.24

δ̂ Bias – -125.00 – – -125.00 –

RMSE – 125.00 – – 125.00 –

α=−9

α̂w Bias -0.00 -0.00 -0.60 -0.00 0.00 -0.16

RMSE 0.00 0.00 1.46 0.00 0.00 0.91

α̂t Bias -0.00 0.00 0.40 -0.00 0.00 0.64

RMSE 0.00 0.00 2.25 0.00 0.00 1.74

δ̂ Bias – -111.11 – – -111.11 –

RMSE – 111.11 – – 111.11 –

Notes: Columns SILS, CF-OLS, and RF-OLS refer to structural iterative

least squares, control-function OLS and reduced-form OLS estimates of models

(SILS), (CF-OLS) and (RF-OLS) in Section 4.3. Table entries are average

biases and root mean squared errors in percent of the true α.
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Table 4: Average bias and root mean squared error of estimated model parameters (1,000 replica-

tions): DGP with approximation error and stochastic error

N = 30 N = 60

SILS CF-OLS RF-OLS SILS CF-OLS RF-OLS

α=−2

α̂w Bias 0.20 -0.00 -1.00 -0.03 -0.18 -0.80

RMSE 4.13 4.11 4.49 1.70 1.70 2.10

α̂t Bias 0.01 -0.07 -0.79 0.01 -0.12 -0.59

RMSE 1.00 1.11 1.76 0.43 0.59 1.13

δ̂ Bias – -128.50 – – -128.95 –

RMSE – 129.33 – – 129.51 –

α=−4

α̂w Bias 0.20 0.12 -0.61 -0.05 -0.04 -0.41

RMSE 3.32 3.30 3.62 1.38 1.38 1.68

α̂t Bias 0.00 0.33 -0.14 0.00 0.24 0.09

RMSE 1.04 1.37 1.99 0.45 0.77 1.31

δ̂ Bias – -114.20 – – -114.57 –

RMSE – 114.42 – – 114.72 –

α=−9

α̂w Bias 0.15 0.12 -0.45 -0.05 0.03 -0.20

RMSE 2.94 2.94 3.22 1.22 1.22 1.51

α̂t Bias 0.00 0.63 0.39 0.00 0.50 0.65

RMSE 1.06 1.67 2.41 0.46 1.01 1.80

δ̂ Bias – -106.46 – – -106.70 –

RMSE – 106.51 – – 106.73 –

Notes: Columns SILS, CF-OLS, and RF-OLS refer to structural iterative

least squares, control-function OLS and reduced-form OLS estimates of models

(SILS), (CF-OLS) and (RF-OLS) in Section 4.3. Table entries are average

biases and root mean squared errors in percent of the true α.
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Table 5: Poisson PML estimators — Average bias and root mean squared error of estimated model

parameters (1,000 replications): DGP with approximation error and stochastic error

N = 30 N = 60

SIP CF-Pois RF-Pois SIP CF-Pois RF-Pois

α=−2

α̂w Bias 0.31 -2.15 -9.28 0.02 -1.94 -7.08

RMSE 6.69 5.70 13.62 2.65 3.00 9.18

α̂t Bias 0.07 -1.46 -6.00 0.03 -1.32 -4.49

RMSE 3.36 2.78 7.90 1.13 1.82 5.27

δ̂ Bias – -129.90 – – -130.49 –

RMSE – 130.60 – – 130.95 –

α=−4

α̂w Bias 0.28 -1.78 -7.92 -0.01 -1.60 -5.99

RMSE 5.65 4.61 11.61 2.21 2.46 7.91

α̂t Bias 0.09 -0.37 -4.05 0.02 -0.46 -2.75

RMSE 3.83 2.86 7.59 1.24 1.49 4.55

δ̂ Bias – -115.05 – – -115.28 –

RMSE – 115.23 – – 115.41 –

α=−9

α̂w Bias 0.24 -1.64 -7.41 -0.02 -1.40 -5.56

RMSE 5.28 4.12 10.66 1.97 2.17 7.32

α̂t Bias 0.11 0.39 -2.58 0.02 0.19 -1.36

RMSE 4.44 3.48 8.08 1.34 1.73 4.80

δ̂ Bias – -106.92 – – -107.02 –

RMSE – 106.95 – – 107.05 –

Notes: Columns SIP, CF-Pois, and RF-Pois refer to structural iterative Pois-

son PML, control-function Poisson PML and reduced-form Poisson PML esti-

mates of (exponentiated versions of) models (SILS), (CF-OLS) and (RF-OLS)

in Section 4.3. Table entries are average biases and root mean squared errors

in percent of the true α.
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